При доведенні сингулярності функції використовують нормальну властивість чисел з множини на якій задано функцію. Під нормальною властивістю зазвичай розуміють ту властивість, якою володіють (у розумінні міри Лебега) майже всі числа з множини задання функції. Доволі часто в якості такої властивості обирають властивість пов’язану з частотами цифр, адже вона дозволяє для майже всіх чисел з області задання функції оцінити відповідний кутовий приріст, як інструмент такої оцінки ми використовуємо одне узагальнення похідної.
A property P of numbers x ∈ [0, 1] is called normal if Lebesgue almost all numbers x have this property. The normal property of the set of arguments of some function f are using on proofing the singularity of f. We are using generalization of derivative to appreciate the derivative of a function at some points.