ISSN: 2310-8290
Показати скорочений опис матеріалу
dc.contributor.author | Albeverio, Sergio | |
dc.contributor.author | Baranovskyi, Oleksandr | |
dc.contributor.author | Kondratiev, Yuri | |
dc.contributor.author | Pratsiovytyi, Mykola | |
dc.date.accessioned | 2016-06-21T14:33:38Z | |
dc.date.available | 2016-06-21T14:33:38Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Albeverio, S. On one class of functions related to Ostrogradsky series and containing singular and nowhere monotonic functions / Albeverio Sergio, Baranovskyi Oleksandr, Kondratiev Yuri, Pratsiovytyi Mykola // Науковий часопис Національного педагогічного університету iменi М. П. Драгоманова. Серiя 1. Фiзико-математичнi науки : зб. наук. праць. – Київ : Вид-во НПУ iменi М. П. Драгоманова, 2013. – Вип. 15. – С. 35-55. | ua |
dc.identifier.uri | http://enpuir.npu.edu.ua/handle/123456789/10661 | |
dc.description.abstract | We study structural, diferential, fractal properties of function F according to the sequence (pn). “Most” of such functions are singular and nowhere monotonic, and singular non-monotonic functions form an essential class of them. We prove that function is nowhere monotonic if the sequence (pn) does not have zeroes but has negative terms. | ua |
dc.language.iso | en | ua |
dc.publisher | Вид-во НПУ ім. М. П. Драгоманова | ua |
dc.subject | first Ostrogradsky series | |
dc.subject | representation of real number | |
dc.subject | infinite system of functional equations | |
dc.subject | singular function | |
dc.subject | nowhere monotonic function | |
dc.subject | Lebesgue measure | |
dc.subject | fractal Hausdorff–Besicovitch dimension | |
dc.subject.classification | 511.72+517.51+519.21 | ua |
dc.title | On one class of functions related to Ostrogradsky series and containing singular and nowhere monotonic functions | ua |
dc.type | Article | ua |