DSpace at library NPU Dragomanova » Міждисциплінарні дослідження складних систем » Номер 3 »

Please use this identifier to cite or link to this item: http://enpuir.npu.edu.ua/handle/123456789/4363
Title: Backward Stochastic Differential Equations Driven by Levy Noise with Applications in Finance
Authors: Persio, L. Di
Scandola, E.
Keywords: incomplete markets
Mathematical Finance
dynamic risk measures
option pricing
неповні ринки
математичні фінанси
динамічні показники ризику
ціни опціону
Issue Date: 2013
Publisher: Видавництво НПУ імені М. П. Драгоманова
Citation: Persio, L. Backward Stochastic Differential Equations Driven by Levy Noise with Applications in Finance / L. Di Persio, E. Scandola // Міждисциплінарні дослідження складних систем : зб. наук. праць. - Київ : Вид-во НПУ імені М. П. Драгоманова, 2013. - № 3. - C. 5-34.
Abstract: The main goal of this paper is to provide a coincise and self- contained introduction to treat nancial mathematical models driven by noise of L evy type in the framework of the backward stochastic di erential equations (BSDEs) theory. We shall present techniques and results which are relevant from a mathematical point of views as well in concrete market applications, since they allow to overcome the discrepancies between real world nancial data and classical models which are based on Brownian di usions. BSEDs' techniques in presence of L evy perturbations actually play a major role in the solution of hedging and pricing problems especially with respect to non-linear scenarios and for incomplete markets. In particular, we provide an analogue of the celebrated Black{Scholes formula, but the L evy market case, with a clear economical interpretation for all the involved nancial parameters, as well as an introduction to the emerging eld of dynamic risk measures, for L evy driven BSDEs, making use of the concept of g-expectation in presence of a Lipschitz driver.
URI: http://enpuir.npu.edu.ua/handle/123456789/4363
Appears in Collections:Номер 3

Files in This Item:
File Description SizeFormat 
Backward Stochastic Differential.pdf238.25 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.