Digital Repository
Dragomanov
Ukrainian State University

Darboux transformation of generalized Jacobi matrices

ISSN: 2310-8290

Show simple item record

dc.contributor.author Kovalyov, Ivan
dc.date.accessioned 2024-11-11T09:30:42Z
dc.date.available 2024-11-11T09:30:42Z
dc.date.issued 2014
dc.identifier.citation Kovalyov, I. Darboux transformation of generalized Jacobi matrices / I. Kovalyov // Methods of Functional Analysis and Topology : Quarterly journal. – 2014. – Vol. 20, № 4. – pp. 301-320. uk
dc.identifier.uri http://enpuir.npu.edu.ua/handle/123456789/46674
dc.description.abstract Let J be a monic generalized Jacobi matrix, i.e. a three-diagonal block matrix of special form, introduced by M. Derevyagin and V. Derkach in 2004. We find conditions for a monic generalized Jacobi matrix J to admit a factorization J = LU with L and U being lower and upper triangular two-diagonal block matrices of special form. In this case the Darboux transformation of J defined by J (p) = UL is shown to be also a monic generalized Jacobi matrix. Analogues of Christoffel formulas for polynomials of the first and the second kind, corresponding to the Darboux transformation J (p) are found. uk
dc.language.iso en uk
dc.subject Darboux transformation uk
dc.subject indefinite inner product uk
dc.subject m-function uk
dc.subject monic generalized Jacobi matrix uk
dc.subject triangular factorization uk
dc.title Darboux transformation of generalized Jacobi matrices uk
dc.type Article uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Links Collection

Search DSpace


Browse

My Account

Statistics