Показати скорочений опис матеріалу

dc.contributor.author Feshchenko, Bohdan
dc.date.accessioned 2024-11-11T09:02:34Z
dc.date.available 2024-11-11T09:02:34Z
dc.date.issued 2016
dc.identifier.citation Feshchenko, B. Actions of finite groups and smooth functions on surfaces / B. Feshchenko // Methods of Functional Analysis and Topology : Quarterly journal. – 2016. – Vol. 22, № 3. – pp. 210-219. uk
dc.identifier.uri http://enpuir.npu.edu.ua/handle/123456789/46668
dc.description.abstract Abstract. Let f : M → be a Morse function on a smooth closed surface, V be a connected component of some critical level of f, and EV be its atom. Let also S(f) be a stabilizer of the function f under the right action of the group of diffeomorphisms Diff(M) on the space of smooth functions on M, and SV (f) = {h ∈ S(f) |h(V ) = V }. The group SV (f) acts on the set π0∂EV of connected components of the boundary of EV . Therefore we have a homomorphism φ : S(f) → Aut(π0∂EV ). Let also G = φ(S(f)) be the image of S(f) in Aut(π0∂EV ). Suppose that the inclusion ∂EV ⊂ M \V induces a bijection π0∂EV → π0(M \V ). Let H be a subgroup of G. We present a sufficient condition for existence of a section s : H → SV (f) of the homomorphism φ, so, the action of H on ∂EV lifts to the H-action on M by f-preserving diffeomorphisms of M. This result holds for a larger class of smooth functions f : M → having the following property: for each critical point z of f the germ of f at z is smoothly equivalent to a homogeneous polynomial 2 → without multiple linear fact. uk
dc.description.abstract uk
dc.language.iso en uk
dc.subject Diffeomorphism uk
dc.subject Morse function uk
dc.title Actions of finite groups and smooth functions on surfaces uk
dc.title.alternative uk
dc.type Article uk


Долучені файли

Даний матеріал зустрічається у наступних фондах

Показати скорочений опис матеріалу