Показати скорочений опис матеріалу

dc.contributor.author Derkach, Volodymyr
dc.contributor.author Kovalyov, Ivan
dc.date.accessioned 2024-11-07T14:11:41Z
dc.date.available 2024-11-07T14:11:41Z
dc.date.issued 2020
dc.identifier.citation Derkach, V. Full indefinite Stieltjes moment problem and Padé approximants / V. Derkach, I. Kovalyov // Methods of Functional Analysis and Topology : Quarterly journal. – 2020. – Vol. 26, № 1. – pp. 1-26. uk
dc.identifier.uri http://enpuir.npu.edu.ua/handle/123456789/46654
dc.description.abstract Full indefinite Stieltjes moment problem is studied via the step-by-step Schur algorithm. Naturally associated with indefinite Stieltjes moment problem are generalized Stieltjes continued fraction and a system of difference equations, which, in turn, lead to factorization of resolvent matrices of indefinite Stieltjes moment problem. A criterion for such a problem to be indeterminate in terms of continued fraction is found and a complete description of its solutions is given in the indeterminate case. Explicit formulas for diagonal and sub-diagonal Pad´e approximants for formal power series corresponding to indefinite Stieltjes moment problem and convergence results for Pad´e approximants are presented. uk
dc.description.abstract uk
dc.language.iso en uk
dc.subject Indefinite Stieltjes moment problem uk
dc.subject generalized Stieltjes function uk
dc.subject generalized Stieltjes polynomials uk
dc.subject Schur algorithm uk
dc.subject resolvent matrix uk
dc.subject uk
dc.subject uk
dc.subject uk
dc.subject uk
dc.subject uk
dc.title Full indefinite Stieltjes moment problem and Padé approximants uk
dc.title.alternative uk
dc.type Article uk


Долучені файли

Даний матеріал зустрічається у наступних фондах

Показати скорочений опис матеріалу