ISSN: 2310-8290
Показати скорочений опис матеріалу
dc.contributor.author | Derkach, Volodymyr![]() |
|
dc.contributor.author | Kovalyov, Ivan![]() |
|
dc.date.accessioned | 2024-11-07T14:11:41Z | |
dc.date.available | 2024-11-07T14:11:41Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Derkach, V. Full indefinite Stieltjes moment problem and Padé approximants / V. Derkach, I. Kovalyov // Methods of Functional Analysis and Topology : Quarterly journal. – 2020. – Vol. 26, № 1. – pp. 1-26. | uk |
dc.identifier.uri | http://enpuir.npu.edu.ua/handle/123456789/46654 | |
dc.description.abstract | Full indefinite Stieltjes moment problem is studied via the step-by-step Schur algorithm. Naturally associated with indefinite Stieltjes moment problem are generalized Stieltjes continued fraction and a system of difference equations, which, in turn, lead to factorization of resolvent matrices of indefinite Stieltjes moment problem. A criterion for such a problem to be indeterminate in terms of continued fraction is found and a complete description of its solutions is given in the indeterminate case. Explicit formulas for diagonal and sub-diagonal Pad´e approximants for formal power series corresponding to indefinite Stieltjes moment problem and convergence results for Pad´e approximants are presented. | uk |
dc.description.abstract | uk | |
dc.language.iso | en | uk |
dc.subject | Indefinite Stieltjes moment problem | uk |
dc.subject | generalized Stieltjes function | uk |
dc.subject | generalized Stieltjes polynomials | uk |
dc.subject | Schur algorithm | uk |
dc.subject | resolvent matrix | uk |
dc.subject | uk | |
dc.subject | uk | |
dc.subject | uk | |
dc.subject | uk | |
dc.subject | uk | |
dc.title | Full indefinite Stieltjes moment problem and Padé approximants | uk |
dc.title.alternative | uk | |
dc.type | Article | uk |