Digital Repository
Dragomanov
Ukrainian State University

Оцінки розподілів супремумів випадкових процесів та рівномірна збіжність їх вейвлет розкладів

ISSN: 2310-8290

Show simple item record

dc.contributor.author Перестюк, Марія Миколаївна
dc.date.accessioned 2022-03-28T08:22:12Z
dc.date.available 2022-03-28T08:22:12Z
dc.date.issued 2009
dc.identifier.citation Перестюк, Марія Миколаївна. Оцінки розподілів супремумів випадкових процесів та рівномірна збіжність їх вейвлет розкладів : автореф. дис. ... канд. фіз.-мат. наук : 01.01.05 - Теорія ймовірностей та математична статистика / Перестюк Марія Миколаївна ; [наук. керівник Козаченко Юрій Васильович] ; Київський нац. ун-т ім. Т. Шевченка. - Київ, 2009. - 16 с. uk
dc.identifier.uri http://enpuir.npu.edu.ua/handle/123456789/36613
dc.description.abstract У дисертації досліджуються оцінки для розподілів супремумів випадкових процесів X (t), t∈R , з просторів Орліча випадкових величин заданих на R . Побудовано такі функції c = {c(t), t∈R} , що з ймовірністю одиниця sup/t∈R(|X(t)|/c(t)) < ∞ та знайдено оцінки ймовірностей P{sup/t∈R(|X(t)|/c(t)) >x}. Отримані результати використовуються для знаходження умов рівномірної збіжності з ймовірністю одиниця вейвлет розкладів цих процесів. Знайдено умови за яких вейвлет розклади випадкових процесів з просторів Орліча збігаються рівномірно на обмеженому інтервалі з ймовірністю одиниця. Загальні теореми застосовуються до випадкових процесів з просторів Lp (Ω) та експоненціальних просторів Орліча. Досліджено також умову рівномірної збіжності, з ймовірністю одиниця, на обмеженому інтервалі вейвлет розкладів g - субгауссових випадкових процесів. Як наслідок отримано необхідні та достатні умови рівномірної збіжності вейвлет розкладів гауссових стаціонарних процесів uk
dc.description.abstract In this dissertation estimates for the distribution of the supremum of stochastic process X (t), t∈R from Orlicz space are investigated. We constructe the functions c = {c(t), t∈R}, such that up/t∈R(|X(t)|/c(t)) < ∞ with probability 1 and find the probability P{sup/t∈R(|X(t)|/c(t)) >x. Obtained results were applied to find conditions of uniform convergence with probability one of the wavelet expansions of random processes. Conditions under which wavelet expansions of random processes from the Orlicz space converge uniformly on the finite intervals are found. General theorems are applied to stochastic processes from the spaces Lp (Ω ) and exponential Orlicz spaces. Condition for uniform convergence of wavelet expansions of g - sub – Gaussian random processes with probability one on the finite intervals is investigated. As a corollary, the necessary and sufficient conditions for uniform convergence of wavelet expansions of stationary Gaussian processes are obtained. uk
dc.description.abstract Условия ограниченности с вероятностью единица супремумов случайных процессов и оценки их распределений интересовали многих выдающихся специалистов в областиттеории вероятностей. В частности этой тематике посвящена работа А. В. Скорохода об экспоненциальной интегрируемости супремума гауссового процесса. Подобными задачами для гауссовских процессов посвящены работы Р. Дадли и К. Ферника. Для более широких классов процессов, в частности для процессов из пространств Орлича случайных величин, такие задачи изучались в работах Н. Коно, Ю. В. Козаченко и др. В основном, подобные задачи изучались для случайных процессов заданных на компакте. Условия ограниченности нормированных процессов заданных на R и оценка распределения их супремумов изучались лишь для узких классов случайных процессов. В диссертации исследуются оценки для распределения супремумов случайных процессов X(t), t∈R из пространств Орлича случайных величин заданных на R . Построены такие функции c = {c(t), t∈R}, что с вероятностью единица sup/t∈R(|X(t)|/c(t)) < ∞ и найдены оценки вероятностей P{sup/t∈R(|X(t)|/c(t)) >x}. Найдены условия при которых вейвлет разложения случайных процессов из пространств Орлича случайных величин сходятся равномерно на ограниченном отрезке с вероятностью единица. Общие теоремы применяются к случайным процессам из пространств Lp (Ω ) и экспоненциальным пространствам Орлича. Исследовано также условие равномерной сходимости, с вероятностью единица, на ограниченном отрезке вейвлет разложений g - субгауссовых случайных процессов. Как следствие получены необходимые и достаточные условия равномерной сходимости вейвлет разложений гауссовых стационарных процессов. uk
dc.language.iso uk_UA uk
dc.publisher Київський нац. ун-т ім. Т. Шевченка uk
dc.subject простір Орліча uk
dc.subject g - субгауссові випадкові процеси uk
dc.subject вейвлет розклади uk
dc.subject гауссові випадкові процеси uk
dc.subject рівномірна збіжність uk
dc.subject Orlicz space uk
dc.subject g - sub – Gaussian random processes uk
dc.subject wavelet expansions uk
dc.subject Gaussian random processes uk
dc.subject uniform convergence uk
dc.subject пространство Орлича uk
dc.subject g - субгауссовые случайные процессы uk
dc.subject вейвлет разложения uk
dc.subject гауссовые случайные процессы uk
dc.subject равномерная сходимость uk
dc.title Оцінки розподілів супремумів випадкових процесів та рівномірна збіжність їх вейвлет розкладів uk
dc.title.alternative Estimates for the distribution of the supremum of random processes and uniform convergence of their wavelet expansions uk
dc.type Abstract uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Links Collection

Search DSpace


Browse

My Account

Statistics