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AROUND OVSYANNIKOV’S METHOD

DMITRI FINKELSHTEIN

Dedicated to Yurĩı Makarovich Berezanskĩı on the occasion of his 90th birthday

Abstract. We study existence, uniqueness, and a limiting behavior of solutions to
an abstract linear evolution equation in a scale of Banach spaces. The generator of the

equation is a perturbation of the operator which satisfies the classical assumptions of
Ovsyannikov’s method by a generator of a C0-semigroup acting in each of the spaces
of the scale. The results are (slightly modified) abstract version of those considered
in [10] for a particular equation. An application to a birth-and-death stochastic

dynamics in the continuum is considered.

1. Introduction

The study of Markov evolutions for distributions of points in a Euclidean space may
be reduced to the study of the evolution equations

(1.1)
d

dt
u(t) = Zu(t), u(0) = u0,

in the Fock-type spaces with weighted L1- or L∞-norms with an (unbounded) linear
operator Z, see, e.g., [23, 18, 13] and the references therein. The well-posedness of the
initial value problem (1.1) in a Banach space (existence, uniqueness, and continuous
dependence on the initial value) requires the operator Z to be a generator of a strongly
continuous (C0-) semigroup of linear operators acting in this space. The semigroup
approach to the evolution of the so-called birth-and-death dynamics of the distributions
of points mentioned above was realized in, e.g., [24, 23, 11, 13]. In particular, the
technical restrictions on the birth and death rates were introduced. However, for some
important models these restrictions either were not satisfied, cf. [17], or required more
strong assumptions on the birth and death rates (that is less interesting for applications),
compare [24] and [9] or [11] and [10]. Moreover, the dynamics with jumps were not
covered by the semigroup approach at all, see, e.g., [4, 5, 15].

To overcome these restrictions, the evolution (1.1) was allowed to be considered in
a scale of Banach spaces. In the latter approach the dynamics was constructed on a
finite time interval [0, T ) only, and, for any t ∈ (0, T ), the solution u(t) to (1.1) belonged
to a proper space of the scale. This was realized in [9, 4, 19, 20, 16] using the so-
called Ovsyannikov’s method: it requires Z to be considered as a bounded operator
between each two spaces Bα′ ⊂ Bα′′ , of a scale {Bα}α∈I , I ⊂ R, of Banach spaces with
the operator norm proportional to (α′′ − α′)−1. Originally this method was found by
G.E. Shilov and A.G.Kostyuchenko, and it was firstly published in 1958 in the book
[21] by I. M. Gelfand and G. E. Shilov. In particular, it was applied to the so-called
Kovalevskya’s system of first-order PDE. In 1960, T. Yamanaka generalized this approach
for the case of the time dependent operator Z(t). In 1965, the method was rediscovered
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in [29] by L. V. Ovsjannikov and was named in the book [32] written by F. Trèves, who
has realized a detailed analysis of the problem

(1.2)
d

dt
u(t) = Z(t)u(t) + f(t), u(s) = us, s ≥ 0,

with numerous applications. After that, the initial value problems (1.1), (1.2) with
the operator norm estimate as above were named the ‘abstract Kovalevskya’s systems’
in the literature. (Note that the method allowed the immediate generalization for the
complex values of t.) The non-linear generalization was introduced by F. Trèves [33]
under assumptions which were essentially simplified by L. Nirenberg [27] and T. Nishida
[28]. K. Deimling generalized the linear case to the equation

(1.3)
d

dt
u(t) = Z(t)u(t) + f(t, u(t)), u(s) = us, s ≥ 0,

for a some class of functions f . Being quite general, the conditions on f guaranteed the
existence of a solution to (1.2) only, cf., e.g., the survey [25]. For further generalizations
see, e.g., [2, 35, 6, 31, 36, 1].

On the other hand, in [10], there were considered the birth-and-death dynamics of
complex (point) systems in the continuum whose generator of the evolution of correlation
functions (see Section 3 below for the definitions) did not allow the singularity (α′′−α′)−1

for the norm of Z in (1.1). Namely, the singularity was of the order (α′′−α′)−2 which can
not be realized in the scheme of Ovsyannikov’s method. Fortunately, the corresponding
evolution equation could be rewritten in the from

(1.4)
d

dt
u(t) = Zu(t) +Au(t), u(0) = u0,

where Z was suitable for Ovsyannikov’s method and A was a generator of a contraction
semigroup acting in each of the spaces of the scale. The important point is that the
evolution of correlation functions was considered in the scale of L∞-type spaces (see, e.g.,
[13, 14] for the explanation of the reasons). By [26], there is not a C0-semigroup in a space
isomorphic to L∞ with an unbounded generator (see also the proof of Proposition 3.1
below). Therefore, the semigroups generated by A were considered in suitable subspaces
of the spaces of the scale, using the technique of the so-called sun-dual semigroups, see
e.g. [7, 34], which goes back to R. S. Phillips [30]. Another problem considered in [10]
was the convergence of the solutions to the equation

(1.5)
d

dt
uε(t) = Zuε(t) +Auε(t), u(0) = u0,

to the solution to the limiting equation, in the course of the so-called Vlasov-type scaling,
see, e.g., [12, 13] for details. This allowed to derive the so-called kinetic equation which
approximately describes the behavior of the density of the birth-and-death dynamics.
All constructions in [10] were done for the particular model, however, in a form useful
for further generalization.

The aims of the present paper are the following. First, we consider the abstract
equation (1.4) in an (increasing) scale of Banach spaces. The assumptions on A and Z will
be abstract and slightly generalized versions of those in [10]. For this equation we prove
the existence result (Theorem 2.1) and show the uniqueness of the ‘integral curves’ of
the differential equation (Theorem 2.4). As was mentioned above, for any t ∈ (0, T ), the
solution to (1.4) belongs to a space of the scale, more precisely, u(t) ∈ Bα, for all α > αt,
for some ‘minimal’ αt. In general, one can not check whether u(t) ∈ Bαt

. Therefore,
it is quite natural to consider (1.4) in the scale of projective limits

{⋂
β>α Bβ

}
α∈I

,

I ⊂ R (Proposition 2.6). This allows to prove rigorously that the flow t 7→ u(t) is
indeed unique and satisfies the semigroup property; surely, on a finite time interval only
(Proposition 2.21). The problem here was that, in contrast to the classical existence
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and uniqueness Picard–Lindelöf theorem for ordinary differential equations, where the
finite time interval was defined by an estimate on the right hand side of the equation, in
Ovsyannikov’s methods we should choose the initial and the terminal spaces, and they
generate the time interval. As a result, we need to be sure that by choosing more wider
terminal space we will have the same solution as in the smaller terminal space (with the
same initial space), see also Remark 2.5 below. Also one should verify that, by choosing
a properly small intermediate moment of time, we could start a new initial value problem
at that time and get the same solution thereafter as if we would consider the first problem
on a bigger time interval.

The second aim is to consider the convergence of the solutions to the abstract equations
(1.5). For the case Aε = 0, ε > 0, the corresponding abstract statement was proved
in [19]. In Theorem 2.10, we generalize this scheme by a simple modification of the
statements presented in [10], for the particular model discussed there.

Finally, in Section 3, we consider birth-and-death dynamics using the technique above.
The dynamics are a ‘combination’ of those studied in [8] and [17]; it describes the evolu-
tion in the course of which the elements disappear (die) more intensively in that regions
of the space, where the amounts of their ‘neighbors’ are too big or too small. The birth
rate of the dynamics is assumed to be constant in the space: the elements appear from
the outside ‘reservoir’ of the system. We prove that the corresponding dynamics exist on
a finite time interval and realize the Vlasov-type scaling. This yields a nonlocal nonlinear
kinetic equation of a new type. In particular, this equation may have one or three positive
stationary points depending on the values of parameters of the system, see Remark 3.3
below. The detailed analysis of this equation will be done in a subsequent paper.

The author is grateful to Prof. Dr. Yuri Kondratiev, Prof. Dr. Yuri Kozitsky, and
Dr. Oleksandr Kutoviy for fruitful discussions.

2. Main results

Let us fix several arrangements. We will use notations like (B, ‖·‖) to say that B is a
Banach space with a norm ‖·‖. Let A be an (unbounded) linear operator on B with a
domain D ⊂ B, we will denote this by (A,D). Note that here and below any inclusion
allows equality. A strongly continuous semigroup of linear bounded operators S(t), t ≥ 0,
on B will be called a C0-semigroup. By e.g. [7, Proposition I.5.5], there exist ω ∈ R and
ν ≥ 1 such that ‖S(t)‖ ≤ νeωt, t ≥ 0, i.e. S(t) is exponentially bounded. If C is a linear
subset of B, we will denote the closure of C with respect to the norm of B by C. Note
that if C is closed, i.e. C = C, then (C, ‖·‖B) is a Banach space as well.

Our first assumption is about a scale of Banach spaces where the dynamics will exist.

Assumption 1. Let α > 0, α ∈ (0,∞] be fixed; set I = (α, α). Let B := (Bα)α∈I be a
family of Banach spaces (Bα, ‖·‖α) which is supposed to be increasing, i.e.

(2.1) Bα′ ⊂ Bα′′ , ‖·‖α′ ≥ ‖·‖α′′ , α′ ≤ α′′, α′, α′′ ∈ I.

Suppose, additionally, that, u ∈ Bα′ ⊂ Bα′′ , u = 0 in Bα′′ yields u = 0 in Bα′ , for any
α′, α′′ as above.

Next, we consider a linear mapping A on BI :=
⋃

α∈I Bα which acts in each of spaces
of the scale B and satisfies the following assumption.

Assumption 2. Let, for any α ∈ I, in the space Bα, there exist a closed linear subset
Cα and its dense linear subset Dα, i.e. Dα ⊂ Cα ⊂ Bα and Dα = Cα = Cα. Let
A : BI → BI be linear operators and such that, for any α ∈ I, the operator (A,Dα) is a
generator of a C0-semigroup Sα(t) on the Banach space (Cα, ‖·‖α). Assume that, for any
α′ ∈ I with α′ < α, Bα′ ⊂ Dα; Bα′ is Sα(t)-invariant, and Sα(t) ↾Bα′

= Sα′(t). Suppose
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also that the constants ν ≥ 1, ω ∈ R, in the definition of quasi-boundedness for Sα(t)
are independent in α, i.e.

(2.2) ‖Sα(t)‖ ≤ νeωt, t ≥ 0, α ∈ I.

Finally, we will deal with a linear mapping Z on BI which may be considered as a
bounded operator between each two spaces of the scale B.

Assumption 3. Let M,N : I → (0,∞) be increasing continuous functions. Let, for any
α∗ ∈ I and for any α′, α′′ ∈ (α, α∗] with α′ < α′′, Z be a bounded linear operator from
Bα′ to Bα′′ , such that the following estimate holds:

(2.3) ‖Zu‖α′′ ≤
( M(α∗)

α′′ − α′
+N(α∗)

)
‖u‖α′ , u ∈ Bα′ .

(Note that M,N may depend on α.)

Under Assumptions above, consider the following function

(2.4) T (α, β) :=
β − α

eνM(β)
, β ≥ α > α.

Theorem 2.1. Let Assumptions 1–3 hold. Let α∗ ∈ I and s ≥ 0. Take an arbitrary

αs ∈ (α, α∗) and set T := T (αs, α
∗). Then, for any us ∈ Bαs

, there exists a function

u : [s, s+ T ) → Bα∗ such that

(1) u is continuous on [s, s+ T ) and continuously differentiable on (s, s+ T );
(2) for any t ∈ (s, s+ T ), Au(t) ∈ Bα∗ and Zu(t) ∈ Bα∗ ;

(3) u solves the following differential equation:

(2.5)
d

dt
u(t) = Au(t) + Zu(t), t ∈ (s, s+ T );

(4) u(s) = us.

Proof. We will follow the scheme from [10]. Take arbitrary Υ ∈ (0, T ). By the continuity
of M , there exists α ∈ (αs, α

∗) such that Υ < T (αs, α) =: T ′. Let q = q(Υ, T, T ′) > 1
be such that qΥ < min{T, T ′}. For any n ∈ N, consider the following partition of the
interval [αs, α] on 2n+ 2 parts:

(2.6) α(2j,n) = αs + j(δ1 + δ2), α(2j+1,n) = α(2j,n) + δ1,

where j = 0, . . . , n and

(2.7) δ1 =
(q − 1)(α− αs)

q(n+ 1)
, δ2 =

α− αs

qn
.

In particular, α(0,n) = αs, α
(2n+1,n) = α, and

(2.8) α(2j+2,n) − α(2j+1,n) = δ2, j = 0, . . . , n− 1.

For an n ∈ N, consider a mapping on BI

(2.9) U (n)
α (t, t1, . . . , tn) = Sα(t− t1)ZSα(t1 − t2)Z . . . Sα(tn−1 − tn)ZSα(tn),

where we set t0 := t. Then, for any τ > 0 and u ∈ Bα(2j,n) ⊂ Dα(2j+1,n) ⊂ Cα(2j+1,n) , one
has Sα(τ)u = Sα(2j,n)(τ)u ∈ Bα(2j+1,n) and hence ZSα(τ)u ∈ Bα(2j+2,n) , j = 0, . . . , n− 1,
with

‖ZSα(τ)u‖α(2j+2,n) ≤ νeωτ
(M(α)

δ2
+N(α)

)
‖u‖α(2j,n) .

As a result, U
(n)
α (t, t1, . . . , tn)us ∈ Bα with

(2.10)
‖U (n)

α (t, t1, . . . , tn)us‖α ≤ νn+1eωt
(M(α)

δ2
+N(α)

)n

‖u‖αs

= νeωt
( qn

eT ′
+ νN(α)

)n

‖u‖αs
.
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Set now V
(1)
α (s, t)us :=

∫ t

s
U (1)(t, t1)us dt1 and

V (n)
α (s, t)us :=

∫ t

s

∫ t1

s

. . .

∫ tn−1

s

U (n)
α (t, t1, . . . , tn)us dtn . . . dt1.

Therefore, the series

(2.11) Sα(t− s)us +

∞∑

n=1

V (n)
α (s, t)us

is majorized in Bα by the series

(2.12) νeωt‖us‖αs

∞∑

n=0

1

n!

( qn

eT ′
+ νN(α)

)n

(t− s)n,

which converges uniformly on t ∈ [s, s+Υ], as

(2.13)

(
1

n!

( qn

eT ′
+ νN(α)

)n

(t− s)n
) 1

n

∼ e

n

( qn

eT ′
+ νN(α)

)
(t− s) ∼ q(t− s)

T ′
≤ qΥ

T ′
< 1.

Therefore, the series (2.11) converges uniformly on t ∈ [s, s + Υ] in Bα to a function
u(t) ∈ Bα. Evidently, each term of (2.11) is continuous as a mapping [s, s + Υ] → Bα

thus u(t) is continuous as well. Since the norm in Bα is stronger than in Bα∗ one has
that [s, s+Υ] ∋ t 7→ u(t) → Bα∗ is also continuous.

Consider now the series of derivatives of the terms from (2.11). Each of them belongs
to Bα ⊂ Dα∗ , thus

(2.14)

d

dt
V (n)
α (s, t) =

∫ t

s

∫ t2

s

. . .

∫ tn−1

s

U (n)(t, t, t2, . . . , tn)us dtn . . . dt1

+

∫ t

s

∫ t1

s

. . .

∫ tn−1

s

AU (n)
α (t, t1, . . . , tn)us dtn . . . dt1

= ZV (n−1)
α (s, t) +AV (n)

α (s, t)

is well-defined and belongs to Bα∗ . By the same arguments as above the series of deriva-
tives converges uniformly on t ∈ [s, s + Υ] in Bα∗ and hence its sum is equal to d

dt
u(t).

Note also that u(t) ∈ Bα ⊂ Dα∗ and hence Au,Zu ∈ Bα∗ . Thus, by (2.14), u(t) satisfies
(2.5). Since Υ ∈ (0, T ) was arbitrary, the statement is proved. �

Remark 2.2. It is easy to see that the summand N(α∗) in (2.3) might be changed on
N(α∗)

(α′′ − α′)δ
, for an arbitrary δ ∈ (0, 1), without any changes in (2.4).

Corollary 2.3. Let conditions and notations of Theorem 2.1 hold. Set

N∗ := sup
α∈[αs,α∗]

N(α) < ∞, T∗ := sup
α∈[αs,α∗]

T (αs, a) < ∞.

Then, for any Υ ∈ (0, T ) and α ∈ (αs, α
∗) such that Υ < T (αs, α) =: T ′, and for any

q ∈
(
1, T ′

Υ

)
,

(2.15) ‖u(t)‖α ≤ C

T ′ − qΥ
eωt‖us‖αs

, t ∈ [s, s+Υ],

where C = C(ν, T∗, N∗) > 0.
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Proof. By (2.12), we have, for t ∈ [s, s+Υ],

‖u(t)‖α ≤ νeωt‖us‖αs

∞∑

n=0

1

n!

(n
e

)n(qΥ
T ′

)n(
1 +

eνT ′N(α)

qn

)n

,

≤ νeωt‖us‖αs

∞∑

n=0

1

e

(qΥ
T ′

)n(
1 +

eνT∗N∗

n

)n

≤ νeωt+eνT∗N∗−1‖us‖αs

T∗

T ′ − qΥ
,

where we have used the following elementary inequalities

n! ≥ e
(n
e

)n

,
(
1 +

x

n

)n

≤ ex, n ∈ N, x > 0. �

Now we are ready to formulate a uniqueness result.

Theorem 2.4. Let Assumptions 1–3 hold. Let α∗ ∈ I and T > 0. Let, for some s ≥ 0
and τ ∈ [s, s + T ) continuous functions [τ, s + T ) → ui(t) ∈ Bα∗ , i = 1, 2 satisfy to the

differential equation (2.5) on (τ, s + T ) in Bα∗ . Suppose that there exists ατ ∈ (α, α∗)
such that τ + T (ατ , α

∗) ≥ s+ T and u1(τ) = u2(τ) =: uτ ∈ Bατ
. Then u1(t) = u2(t) in

Bα∗ , for any t ∈ (τ, s+ T ).
In particular, the function u in Theorem 2.1 is unique.

Proof. Take an arbitrary Υ ∈ (τ − s, T ) thus τ < s+Υ < s+ T < τ + T (ατ , α
∗). Since

α∗ ∈ I, I is an open interval and M is continuous on I, there exists α◦ ∈ I such that
α◦ > α∗ and s + Υ < τ + T (ατ , α

◦). Let u(t) := u1(t) − u2(t), t ∈ [τ, s + T ). Then u
solves (2.5) on (τ, s+T ) with u(τ) = 0 ∈ Bατ

. It is enough to prove that u(t) = 0 ∈ Bα◦

(and thus u(t) = 0 ∈ Bα∗). Since the norm in Bα∗ is stronger than the norm in Bα◦ ,
u(t) solves (2.5) in Bα◦ as well. Then, one has the following equality in Bα◦

(2.16) u(t) =

∫ t

τ

Sα◦(t− t′)Zu(t′)dt′, t ∈ [τ, s+Υ].

However, u(t) ∈ Bα∗ hence, for any α′ ∈ (α∗, α◦), one can take any α′′ ∈ (α∗, α′) and
consider the right hand side of (2.16) as follows: u(t′) ∈ Bα∗ , Zu(t′) ∈ Bα′′ ⊂ Dα′ ,
Sα◦(t− t′)Zu(τ) = Sα′(t− t′)Zu(τ) ∈ Bα′ ⊂ Bα◦ , and all the mappings are continuous.
Therefore, one can iterate (2.16) n times and consider partition (2.6)–(2.7) with α◦, α∗

in place of α∗, αs respectively. As a result, one gets, cf. (2.10),

(2.17) ‖u(t)‖α◦ ≤ eωt
( q′n

eT (α∗, α◦)
+ νN(α◦)

)n (t− τ)n

n!
‖u(t)‖α∗ , t ∈ [τ, s+Υ],

with a properly chosen q′ > 1. Let now N ∈ N be big enough to guarantee that (2.17)
implies ‖u(t)‖α◦ = 0, for t ∈ [τ, τ+σ], σ := s+Υ−τ

N
, i.e. N > s+Υ−τ

T (α∗,α◦) > 0. Thus u(t) = 0

in Bα◦ and hence in Bα∗ , for t ∈ [τ, τ + σ]. Repeat now the same arguments with initial
zero value at t = τ + σ, it will lead to the zero solution in Bα∗ on [τ + σ, τ + 2σ] and so
on. As a result, we will get that u(t) = 0 in Bα∗ on the whole [τ, s+Υ], and since Υ was
arbitrary we will have the uniqueness on the [τ, s+ T ). �

Remark 2.5. In applications, we often have an estimate like (2.3) with M̃(α′′, α′) in place

of M(α∗), with a function M̃ which is increasing in the first variable and decreasing in

the second one thus M̃(α′′, α′) ≤ M̃(α∗, α) =: M(α∗), and M is an increasing function,
cf. [9, 4, 16, 17]. Note also, that the function T (α, β) is not typically increasing in β,
see (2.4) and the references above; therefore, the bigger terminal space Bα∗ does not
necessarily lead to a wider time interval. Note that, in the cited references, the function
T (α, ·) had a unique maximum point.
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For any α ∈ I, consider the set

(2.18) Bα+ :=
⋂

β>α

Bβ ,

which may be endowed by the sequential topology of a projective space, see e.g. [3], i.e.
un → u in Bα+ if and only if un → u in all Bβ , β > α (of course, by (2.1), it is sufficient
to take β ∈ (α, α + δ) only, for some δ > 0). Stress that, under Assumption 3, Z is
continuous on Bα+.

Proposition 2.6. In conditions and notations of Theorem 2.1,

(1) the mapping Bαs
∋ us 7→ u(t) ∈ Bα∗ is continuous, uniformly in t ∈ [s, s+Υ] ⊂

[s, s+ T );
(2) for any t ∈ (s, s+ T ), there exist

(2.19) α(t, s, αs) := inf
{
α ∈ [αs, α

∗)
∣∣ u(t) ∈ Bα

}
< α∗,

such that u(t) ∈ Bα(t,s,αs)+ and the mapping Bαs
∋ us 7→ u(t) ∈ Bα(t,s,αs)+ is

also continuous, uniformly in t ∈ [s, s+Υ] ⊂ [s, s+ T );
(3) one can take us ∈ Bαs+; then all previous statements remain true with Bαs+ in

place of Bαs
only.

Proof. We will use details of the proof of Theorem 2.1.
(1) Let v(t) solve (2.5) on [s, s + T ) with v(0) = vs ∈ Bαs

. Then we will have that,
for any t ∈ [s, s+Υ] ⊂ [s, s+ T ), and for the same α ∈ (αs, a

∗), q > 1,

(2.20)

‖u(t)− v(t)‖α∗ ≤ ‖u(t)− v(t)‖α

≤ max
{
eω(s+Υ), 1

}
‖us − vs‖αs

∞∑

n=0

1

n!

( qn

eT ′
+ νN(α)

)n

Υn,

that implies the needed continuity, as, recall, α depends on Υ, q = q(T, T ′) = q(α, αs)
and thus the estimate is uniform in t ∈ [s, s+Υ].

(2) Recall that the solution u(t) in Bα∗ to (2.5) is given on [s, s + T ) by (2.11) and,
for a chosen t ∈ [s, s + T ), the value u(t), as a matter of fact, belongs to Bα, for any
α ∈ [αs, α

∗) such that s < t < s + T (αs, α). Since T (αs, αs) = 0 we have by the
continuity arguments that there exists α◦ = α(t, s, αs) such that T (αs, α

◦) = t − s and
there exists an open subinterval of (αs, α

∗) where T (αs, α) > t − s (or a union of such
subintervals). Thus, the set in (2.19) is non-empty, the infimum does exist, that yields the
first statement. Next, by (2.20), the mapping Bαs

∋ us 7→ u(t) ∈ Bα will be continuous,
for any α > α(t, s, αs), uniformly in t ∈ [s, s+Υ]. This fulfilled the statement.

(3) Let us ∈ Bαs+. For any Υ ∈ (0, T ), one can choose α′
s ∈ (αs, α

∗) with α′
s − αs

small enough to guarantee that Υ < T (α′
s, α

∗) < T . Then one can repeat all arguments
above and get that there exists solution to (2.5) on [s, s+Υ] in Bα∗ with u(0) = us ∈ Bα′

s

such that Bα′

s
∋ us 7→ u(t) ∈ Bα∗ (and Bα∗ may be replaced on Bα(t,s,α′

s)+
). If we take

now α′′
s ∈ (αs, α

∗), α′′ 6= α′, then the solution will be given by the same series (2.11)
which converges in the same space Bα∗ (or even in a smaller space). The difference
will be in the denominator of (2.15) only: namely, ‖u(t)‖β ≤ C̄(β)‖us‖γ , γ > αs,
β ∈ (α(t, s, α′

s), α
∗), t ∈ [s, s+Υ]. This, naturally, implies the continuity of the mapping

Bαs+ ∋ us 7→ u(t) ∈ Bα(t,s,αs)+. �

Remark 2.7. Note that, by the comparison series criterion, we have from (2.13) that the
majorized series for (2.11) diverges for α = α(t, s, αs). However, one can not state that
u(t) /∈ Bα(t,s,αs).
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According to Theorem 2.6, for any s ≥ 0, α∗ ∈ I, αs ∈ (α, α∗), t ∈ [s, s + T (αs, α
∗))

one can define the mapping U(s, t) : Bαs+ → Bα(t,s,αs)+ given by

(2.21) U(s, t)us = u(t).

Proposition 2.8. Let s ≥ 0, α∗ ∈ I, αs ∈ Bαs
be arbitrary. Let t > τ > s be such that

τ < s+ T (αs, α
∗), t < min

{
τ + T (α(τ, s, αs), α

∗), s+ T (αs, α
∗)
}
. Then

(2.22) U(s, t)us = U(τ, t)U(s, τ)us.

Proof. The statements follows from the uniqueness Theorem 2.4. Indeed, σ := min
{
τ +

T (α(τ, s, αs), α
∗), s+T (αs, α

∗)
}
> s, therefore, T := σ−s > 0. Then, by the construction

of the mapping (2.21), both functions U(s, t)us and U(τ, t)U(s, τ)us solves (2.5) on (τ, s+
T ) and they are both equal to U(s, τ)us at t = τ . Hence, by Theorem 2.4 they coincide
on (τ, τ + T ) as well. �

Remark 2.9. In the same manner as before, one prove the following statement. In con-
ditions and notations of Theorem 2.1, suppose, additionally that there exists α∗∗ ∈ I
such that α∗ < α∗∗ and Assumption 3 holds for α∗∗ in place of α∗. Set T̃ := T (αs, α

∗∗)

and T0 := min{T, T̃}. Let ũ : [s, s + T̃ ) → Bα∗∗ be the solution to (2.5) according to
Theorem 2.1. Then, for any t ∈ [s, s+ T0), ũ(t) = u(t) ∈ Bα∗ .

Assumption 4. Let {Dα, Cα}α∈I be such as in Assumption 2. Let Aε : BI → BI , ε ≥ 0
be linear operators, such that, for any ε ≥ 0 and for any α ∈ I, the operator (Aε, Dα) is
a generator of a C0-semigroup Sα,ε(t) on the Banach space (Cα, ‖·‖α). Assume that, for
any α′ ∈ I with α′ < α, Bα′ ⊂ Dα; Bα′ is Sα,ε(t)-invariant, and Sα,ε(t) ↾Bα′

= Sα′,ε(t).
Suppose also that the constants ν ≥ 1, ω ∈ R are such that

(2.23) ‖Sα,ε(t)‖ ≤ νeωt, t ≥ 0, α ∈ I, ε ≥ 0.

Assumption 5. Let M,N : I → (0,∞) be increasing continuous functions. Let, for any
α∗ ∈ I and for any α′, α′′ ∈ (α, α∗] with α′ < α′′, Zε, ε ≥ 0, be bounded linear operators
from Bα′ to Bα′′ , such that the following estimate holds:

(2.24) ‖Zεu‖α′′ ≤
( M(α∗)

α′′ − α′
+N(α∗)

)
‖u‖α′ , u ∈ Bα′ .

Theorem 2.10. Let Assumption 1, 4, 5 hold. Let Pε, pε : I → (0,∞), ε > 0 be increasing

continuous functions, such that

(2.25) lim
ε→0

pε(α) = lim
ε→0

Pε(α) = 0, α ∈ I,

and let r ∈ N. Let α∗ ∈ I and α′, α′′ ∈ (α, α∗), α′ < α′′ be arbitrary, and suppose that

(2.26) ‖Sα′′,ε(t)u−Sα′′,0(t)u‖α′′ ≤ pε(α
∗)eωt‖u‖α′ , t ∈ (s, s+T ), ε > 0, u ∈ Cα′ ,

and

(2.27) ‖Zεu− Z0u‖α′′ ≤
r∑

j=1

Pε(α
∗)

(α′′ − α′)j
‖u‖α′ , ε > 0, u ∈ Bα′ .

Let s ≥ 0, αs ∈ (α, α∗), us,ε, us,0 ∈ Bαs
be arbitrary, and suppose that

(2.28) lim
ε→0

‖us,ε − us,0‖αs
= 0.

Then, for any ε ≥ 0, there exist a unique solution to the differential equation

(2.29)





d

dt
uε(t) = (Aε + Zε)uε(t), t ∈ (s, s+ T ),

uε(s) = us,ε
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in Bα∗ , where T = T (αs, α
∗); and, moreover, for any Υ ∈ (s, s+ T ),

(2.30) lim
ε→0

sup
t∈[s,s+Υ]

‖uε(t)− u0(t)‖α∗ = 0.

Proof. The existence and uniqueness of solutions to (2.29) follow directly from The-
orems 2.1 and 2.4. By the proof of Theorem 2.1, it is easy to see that there exists
α = α(Υ) ∈ (αs, α

∗), which does not depend on ε, such that

(2.31) uε(t) =
∞∑

n=0

V (n)
α,ε (s, t)us,ε, ε ≥ 0,

where V
(0)
α,ε (s, t) := Sα,ε(t− s) and

V (n)
α,ε (s, t) :=

∫ t

s

∫ t1

s

. . .

∫ tn−1

s

U (n)
α,ε (t, t1, . . . , tn) dtn . . . dt1,

U (n)
α,ε (t, t1, . . . , tn) := Sα,ε(t− t1)ZεSα,ε(t1 − t2)Zε . . . Sα,ε(tn−1 − tn)ZεSα,ε(tn),

and the series (2.31) converges in Bα. Recall that Υ < T ′ = T (αs, α) and let, as before,

q ∈
(
1, T ′

Υ

)
.

Therefore, by the proof of Corollary 2.3,

‖uε(t)− u0(t)‖α

≤
∞∑

n=0

∥∥(V (n)
α,ε (s, t)− V

(n)
α,0 (s, t)

)
us,0

∥∥
α
+

∞∑

n=0

∥∥V (n)
α,0 (s, t)(us,ε − us,0)

∥∥
α

≤
∥∥(Sα,ε(t− s)− Sα,0(t− s)

)
us,0

∥∥
α

+
∞∑

n=1

∫ t

s

∫ t1

s

. . .

∫ tn−1

s

∥∥(U (n)
α,ε (t, t1, . . . , tn)− U

(n)
α,0 (t, t1, . . . , tn)

)
us,0

∥∥
α
dtn . . . dt1

+
Ceω(s+Υ)

T ′ − qΥ
‖us,ε − us,0‖αs

.

Denote, for simplicity of notations, Qα,ε(t) := Sα,ε(t) − Sα,0(t), t ≥ 0, Rε :=
Zε − Z0. Then, for n ≥ 1,

U (n)
α,ε (t, t1, . . . , tn)− U

(n)
α,0 (t, t1, . . . , tn)

= Qα,ε(t− t1)ZεSα,ε(t1 − t2)Zε . . . Sα,ε(tn−1 − tn)ZεSα,ε(tn)

+ Sα,0(t− t1)RεSα,ε(t1 − t2)Zε . . . Sα,ε(tn−1 − tn)ZεSα,ε(tn)

+ Sα,0(t− t1)Z0Qα,ε(t1 − t2)Zε . . . Sα,ε(tn−1 − tn)ZεSα,ε(tn)

+ · · ·
+ Sα,0(t− t1)Z0Sα,0(t1 − t2)Z0 . . . Qα,ε(tn−1 − tn)ZεSα,ε(tn)

+ Sα,0(t− t1)Z0Sα,0(t1 − t2)Z0 . . . Sα,0(tn−1 − tn)RεSα,ε(tn)

+ Sα,0(t− t1)Z0Sα,0(t1 − t2)Z0 . . . Sα,0(tn−1 − tn)Z0Qα,ε(tn).

By using the partition (2.6)–(2.7), one gets, cf. (2.10),

‖U (n)
α,ε (t, t1, . . . , tn)− U

(n)
α,0 (t, t1, . . . , tn)‖α

≤ νeωt
( qn

eT ′
+ νN(α)

)n−1
(
npε(α) + nν

r∑

j=1

Pε(α)

δj2

)
‖u‖αs

≤ νeωt
( qn

eT ′
+ νN(α)

)n−1
(
nνpε(α) + nν

r∑

j=1

(qn)j

(eT ′)j
Pε(α)

)
‖u‖αs

.
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As a result,

‖uε(t)− u0(t)‖α
≤ pε(α

∗)νeωΥ‖us,0

∥∥
α,s

+ Pε(α)

∞∑

n=1

Υn

n!
νeω(s+Υ)

( qn

eT ′
+ νN(α)

)n
(
nν

r∑

j=1

(qn)j−1

(eT ′)j−1

)
‖us,0

∥∥
α,s

+ pε(α)

∞∑

n=1

Υn

n!
νeω(s+Υ)

( qn

eT ′
+ νN(α)

)n−1

nν‖us,0

∥∥
α,s

+
Ceω(s+Υ)

T ′ − qΥ
‖us,ε − us,0‖αs

,

that fulfills the statement, by (2.28), (2.25); note that convergence of two latter series
holds by (2.13). (As a matter of fact, we have proved the convergence (2.30) with a
stronger norm ‖·‖α.) �

3. An application to birth-and-death dynamics

We will start with a brief introduction to the configuration space analysis. More
detailed explanation may be found in, e.g., [22, 13, 14].

Let Bb(R
d) be the set of all bounded Borel subsets of Rd. The configuration space

over space Rd consists of all locally finite subsets (configurations) of Rd, i.e.

(3.1) Γ :=
{
γ ⊂ Rd

∣∣ |γΛ| < ∞, for all Λ ∈ Bb(R
d)
}
.

Here | · | means the cardinality of a set, and γΛ := γ ∩ Λ. The Borel σ-algebra B(Γ) is
generated by all mappings Γ ∋ γ 7→ |γΛ| ∈ N0 := N ∪ {0}. Let M1

fm(Γ) be the set of all
probability measures µ on

(
Γ,B(Γ)

)
such that

∫
Γ
|γΛ|n dµ(γ) < ∞, for any Λ ∈ Bb(R

d)
and n ∈ N.

Let Γ0 be the space of all finite configurations from Rd, i.e.

(3.2) Γ0 :=
{
η ⊂ Rd

∣∣ |η| < ∞
}
.

Then Γ0 =
⊔

n∈N0
Γ(n), where Γ(n) :=

{
η ⊂ Rd

∣∣ |η| = n
}
, n ∈ N0. Clearly, Γ(n) ∼

(̃Rd)n/Sn, where the tilde denotes the product set without diagonals and Sn is the
permutation group. This isomorphism provides the natural σ-algebra B(Γ0) on Γ0. The
Lebesgue–Poisson measure on

(
Γ0,B(Γ0)

)
is defined via the following equality:

(3.3)

∫

Γ0

G(η) dη = G(0) +

∞∑

n=1

∫

(Rd)n
G(n)(x1, . . . , xn) dx1 . . . dxn,

where G is a measurable nonnegative function on Γ0, which may be identified with
the sequence of symmetric functions G(n), namely, G({x1, . . . , xn}) = G(n)(x1, . . . , xn),
G(∅) = G(0) ∈ R.

Let Bbs(Γ0) be the set of all measurable bounded functions G : Γ0 → R such that
there exist N ∈ N and Λ ∈ Bb(R

d) such that, for n > N , G(n) ≡ 0, and, for n ≤ N ,
G(n)(x1, . . . , xn) = 0 if only xi /∈ Λ, for some 1 ≤ i ≤ n. Then, for any G ∈ Bbs(Γ0), one
can define the following function on Γ:

(3.4) (KG)(γ) :=
∑

η⋐γ

G(η), γ ∈ Γ,

where the summation is taken over all finite subconfigurations η ∈ Γ0 of the (infinite)
configuration γ ∈ Γ; we denote this by the symbol, η ⋐ γ. The mapping K is linear,



144 DMITRI FINKELSHTEIN

positivity preserving, and invertible, with

(3.5) (K−1F )(η) :=
∑

ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0.

It can be shown that, for G ∈ Bbs(Γ0) with Λ ∈ Bb(R
d), N ∈ N as above, KG(γ) =

KG(γΛ) and |KG(γ)| ≤ C(1 + |γΛ|)N , γ ∈ Γ. In particular, KG ∈ L1(Γ, µ), for any
µ ∈ M1

fm(Γ). The correlation function of a measure µ ∈ M1
fm(Γ) is the function kµ :

Γ0 → R+ which satisfies the identity

(3.6)

∫

Γ

(KG)(γ) dµ(γ) =

∫

Γ0

G(η)kµ(η) dη,

for any 0 ≤ G ∈ Bbs(Γ0), provided such kµ does exist.
We consider a model which is a combination of models discussed in [8] and [17].
Let a, φ : Rd → R+ := [0,∞) be measurable nonnegative symmetric functions, i.e.

a(−x) = a(x), φ(−x) = φ(x), x ∈ Rd. Assume that a, φ ∈ L1(Rd, dx) ∩ L∞(Rd, dx). Set

(3.7) 〈a〉 :=
∫

Rd

a(x) dx, ā := ess sup
x∈Rd

a(x), 〈φ〉 :=
∫

Rd

φ(x) dx, φ̄ := ess sup
x∈Rd

φ(x).

Let m,λ > 0 be constants. For any F ∈ K
(
Bbs(Γ0)

)
, we define the mapping

(LF )(γ) =
∑

x∈γ

( ∑

y∈γ\x

a(x− y) +m exp
(
−

∑

y∈γ\x

φ(x− y)
))(

F (γ \ x)− F (γ)
)

+ λ

∫

Rd

(
F (γ ∪ x)− F (γ)

)
dx.

(3.8)

Here and below we use the notations \x and ∪x instead of more precise \{x} and ∪{x},
respectively. Heuristically, L describes the following evolution of configurations: during
a (small) time t in an arbitrary domain Λ ∈ Bb(R

d) a new elements may appear with
the probability λ vol(Λ) t + o(t), whereas the probability for the existing point x ∈ γ
disappears is equal to

∑
y∈γ\x a(x− y)t+m exp

(
−∑

y∈γ\x φ(x− y)
)
t+ o(t). Thus this

probability will be close to 1 in very dense regions of the space as well as in the almost
‘uninhabited’ places.

Since F (γ ∪x) = F ((γ ∪x)Λ), the integrand in (3.8) equals to 0 outside of Λ, thus the
integral is well-defined. By the same arguments, the first (outer) sum in (3.8) is taken
over x ∈ γΛ only. The other sums (in y) are, however, infinite. In particular, (3.8) is
well-defined for all γ ∈ Γ, if, say, a has a bounded support. It is worth noting, that,
regardless of a, (3.8) is defined pointwise, for γ ∈ Γ0. This is sufficient to consider

(3.9) (L̂G)(η) := (K−1LKG)(η), η ∈ Γ0, G ∈ Bbs(Γ0).

By results of [18] and [17, Proposition 3.1], one has that, for any G ∈ Bbs(Γ0), η ∈ Γ0,

(L̂G)(η) =− Ea(η)G(η)−
∑

x∈η

( ∑

y∈η\x

a(x− y)
)
G(η \ x)

−m
∑

ξ⊂η

G(ξ)
∑

x∈ξ

e−Eφ(x,ξ\x)eλ
(
e−φ(x−·) − 1, η \ ξ

)

+ λ

∫

Rd

G(η ∪ x) dx,

(3.10)
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where

Ea(η) :=
∑

x∈η

∑

y∈γ\x

a(x− y), η ∈ Γ0,(3.11)

Eφ(x, η \ x) :=
∑

y∈γ\x

φ(x− y), η ∈ Γ0, x ∈ η,(3.12)

and, for any measurable f : Rd → R,

(3.13) eλ(f, η) :=
∏

x∈η

f(x), η ∈ Γ0\{∅}, eλ(f, ∅) := 1.

The mapping L defines an evolution of measures in M1
fm(Γ). Namely, for a given

µ0 ∈ M1
fm(Γ), consider the initial value problem

(3.14)





d
dt

∫
Γ
F (γ) dµt(γ) =

∫
Γ
(LF )(γ) dµt(γ), t > 0,

µt

∣∣
t=0

= µ0,

which should hold for any F ∈ K
(
Bbs(Γ0)

)
such that the right hand side of (3.14) is

well-defined. The equation (3.14) may be rewritten in terms of the correlation functions
kt := kµt

of measures µt ∈ M1
fm(Γ), provided that they all do exist. Namely, one has

(3.15)





d
dt

∫
Γ0

G(η)kt(η) dη =
∫
Γ0
(L̂G)(η)kt(η) dη, t > 0,

kt
∣∣
t=0

= k0 = kµ0
.

The latter equation will be the main object of our interest. For relations between solutions
to (3.15) and (3.14) see, e.g., [13]. One can rewrite (3.15) in the “strong” form

(3.16)
∂

∂t
kt(η) = (L△kt)(η), η ∈ Γ0, t > 0,

where the linear mapping L△ is defined via the duality

(3.17)

∫

Γ0

(L̂G)(η)k(η) dη =

∫

Γ0

G(η)(L△k)(η) dη,

for G, k ∈ Bbs(Γ0), and it is extended to the linear operator in (a scale of) Banach spaces
by the constructions below. By, e.g., [18] and [17], one has that

(L△k)(η) =− Ea(η)k(η)−
∑

y∈η

∫

Rd

a(x− y)k(η ∪ x) dx

−m
∑

x∈η

e−Eφ(x,η\x)

∫

Γ0

k (η ∪ ξ) eλ
(
e−φ(x−·) − 1, ξ

)
dξ

+ λ
∑

x∈η

k(η \ x), η ∈ Γ0.

(3.18)

We consider the following scale of Banach spaces:

(3.19) Kα :=
{
k : Γ0 → R

∣∣ k(η)α−|η| ∈ L∞(Γ0, dη)
}
, α > 1,

with the norms given by

(3.20) ‖k‖α := ess sup
η∈Γ0

|k(η)|α−|η|.

For the motivation, see, e.g., [13, 14]. It is easy to see, that {Kα}α>1 satisfies to As-
sumption 1 with α = 1, I = (1,∞).

We set, for η ∈ Γ0,

(Ak)(η) = −Ea(η)k(η), (Zk)(η) = (L△k)− (Ak)(η).
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Proposition 3.1. The linear mappings A and Z satisfy Assumptions 2 and 3, corres-

pondingly.

Proof. The operator A with the maximal domain

(3.21) Dα :=
{
k ∈ Kα

∣∣ Ek ∈ Kα

}
,

naturally, generates the semigroup

(3.22) (S(t)k)(η) = e−tE(η)k(η), η ∈ Γ0,

in any Kα, α > 1. However, this semigroup is not a C0 one. Indeed, for kα(η) := α−|η|,
one has

‖S(t)kα − kα‖α = ess sup
η∈Γ0

∣∣e−tE(η) − 1
∣∣ = 1 6→ 0, t → 0.

Therefore, one should use the technique of the ⊙-dual semigroups; for details see, e.g.,
[34, 7]. Namely, we consider the C0-semigroup given by the same expression (3.22), but
considered in the space Lα := L1(Γ0, α

|η| dη). Then S(t) is dual to that semigroup in
the dual space Kα (where duality is realized by (3.17)). Then, the space Cα := Dα (the
closure is in the norm of Kα) is S(t)-invariant and the restriction Sα(t) := S(t) ↾Cα

consists a C0-semigroup there. The generator of Sα(t) will be the part of A, i.e. (A,Dα),
where Dα = {k ∈ Cα | Ak ∈ Cα}, cf. [13]. Hence Dα is S(t)-invariant as well. It should
be stressed also that Kα′ ⊂ Dα, for any 1 < α′ < α. Indeed, for a k ∈ Kα′ ,

(3.23) α−|η|Ea(η)|k(η)| ≤ ‖k‖α′ ā|η|2
(α′

α

)|η|

≤ 4‖k‖α′ ā

e2 ln2 α′

α

,

where we used that supr>0 r
2qr = 4/(e ln q)2, for q ∈ (0, 1). Since |S(t)k| ≤ |k| pointwise,

the space Kα′ is also S(t)-invariant. From these arguments we easily get that A satisfies
Assumption 2 with ν = 1, ω = 0.

Next, let us denote

(Z(1)k)(η) := −
∑

y∈η

∫

Rd

a(x− y)k(η ∪ x) dx.

Then, for any 1 < α′ < α′′ < α∗ and for any k ∈ Kα′ ,

(α′′)−|η||(Z(1)k)(η)| ≤ 〈a〉α′‖k‖α′ |η|
( α′

α′′

)|η|

≤ 〈a〉α′‖k‖α′

1

−e ln α′

α′′

≤ 〈a〉(α∗)2‖k‖α′

e(α′′ − α′)
,

where we used that supr>0 rq
r = 1/(e ln q), for q ∈ (0, 1), and lnα′′ − lnα′ = 1

α̃
(c′′ − c′),

for some α̃ ∈ (α′, α′′).
The similar estimate for (Z(2)k)(η) := (Zk)(η) − (Z(1)k)(η) was obtained in [17,

Proposition 3.2]. Combining these results, one gets that Z satisfies Assumption 3, with

M(α∗) =
1

e

(
〈a〉(α∗)2 + α∗me〈φ〉α

∗

+ α∗λ
)
.

(To be more precise, we used here the estimate
∫
Rd(1− e−φ(x)) dx ≤ 〈φ〉, to simplify the

expression from [17, Proposition 3.2].) �

Consider now the so-called Vlasov scaling of the dynamics above, see, e.g., [12, 13].
Namely, for an ε > 0, we denote by Lε the operator (3.8) with εa(·), εφ(·), ε−1λ in place
of a(·), φ(·), λ, respectively. Then, one can construct L△

ε in the same way as above.
We set also

(3.24) (L△
ε,renk)(η) := ε|η|L△

ε ε−|η|k(η).
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Directly from (3.18), one gets

(L△
ε,renk)(η) =− εEa(η)k(η)−

∑

y∈η

∫

Rd

a(x− y)k(η ∪ x) dx

−m
∑

x∈η

e−εEφ(x,η\x)

∫

Γ0

k (η ∪ ξ) eλ

(e−εφ(x−·) − 1

ε
, ξ
)
dξ

+ λ
∑

x∈η

k(η \ x), η ∈ Γ0.

(3.25)

We denote, for ε > 0,

(Aεk)(η) := −εEa(η)k(η), (Zεk)(η) := (L△
ε,renk)(η)− (Aεk)(η),

and we set, naturally, (A0k)(η) := 0 and

(Z0k)(η) :=−
∑

y∈η

∫

Rd

a(x− y)k(η ∪ x) dx

−m
∑

x∈η

∫

Γ0

k (η ∪ ξ) eλ
(
−φ (x− ·) , ξ

)
dξ + λ

∑

x∈η

k(η \ x).

Proposition 3.2. The linear mappings Aε and Zε, ε ≥ 0 satisfy Assumptions 4 and 5,

correspondingly. Moreover, the conditions (2.26), (2.27), (2.25) of Theorem 2.10 hold.

Proof. The operators Aε satisfy Assumption 4 by the same arguments as in the proof
of Proposition 3.1 (independently on ε ≥ 0). The operators Zε satisfy Assumption 5 by
the estimation for Z(1) in the proof of Proposition 3.1 and by [17, Proposition 4.2] for
Zε − Z(1), ε ≥ 0.

Next, in the notations of Theorem 2.10, for any 1 < α′ < α′′ < α∗ and for any k ∈ α′,

‖Sε(t)k − S0(t)k‖α′′ = ess sup
η∈Γ0

(α′′)−|η|
∣∣e−tεEa(η) − 1

∣∣|k(η)|

≤ ‖k‖α′(s+ T )ε ess sup
η∈Γ0

Ea(η)
(α′

α

)|η|

,

that implies (2.26), by using the same estimate as in (3.23).
Finally,

(Zεk)(η)− (Z0k)(η) =−m
∑

x∈η

e−εEφ(x,η\x)

∫

Γ0

k (η ∪ ξ) eλ

(e−εφ(x−·) − 1

ε
, ξ
)
dξ

+m
∑

x∈η

∫

Γ0

k (η ∪ ξ) eλ
(
−φ (x− ·) , ξ

)
dξ,

and the estimate (2.27) (with r = 2) was proved in [17, Proposition 4.6]. �

Suppose now, for simplicity, that k0,ε := k0 ∈ Kα0
, α0 > 1, ε > 0. Then, by

Theorem 2.10, the solutions to the equation

(3.26)
∂

∂t
kt,ε(η) = (L△

ε,renkt,ε)(η), η ∈ Γ0, t ∈ (0, T ),

converges in any Kα∗ with α∗ > α0 to the solution to the equation

(3.27)
∂

∂t
kt(η) = (Z0kt)(η), η ∈ Γ0, t ∈ (0, T ),

uniformly on any [0,Υ] ⊂ (0, T ), where T = T (α0, α
∗).
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The limiting equation (3.27) has the following key-property: if k0(η) = eλ(ρ0, η), for
a function ρ0 ∈ L∞(Rd, dx) then one can find a (unique) solution to (3.27) of the same
form: kt(η) = eλ(ρt, η). To show this, note that

∂

∂t
eλ(ρt, η) =

∑

x∈η

ρt(x)eλ(ρt, η \ x)

and

(Z0eλ(ρt))(η) :=−
∑

x∈η

ρt(x)

∫

Rd

a(x− y)ρt(y) dyeλ(ρt, η \ x)

−m
∑

x∈η

ρt(x)eλ(ρt, η \ x)
∫

Γ0

eλ(ρt, ξ)eλ
(
−φ (x− ·) , ξ

)
dξ

+ λ
∑

x∈η

eλ(ρt, η \ x).

By (3.3), we have, for any f ∈ L1(Rd, dx),
∫

Γ0

eλ(f, η) dη = exp
{∫

Rd

f(x) dx
}
.

Therefore, kt(η) = eλ(ρt, η) indeed solves (3.27), provided that ρt is a unique solution to
the following equation

(3.28)
∂

∂t
ρt(x) = −ρt(x)(a ∗ ρt)(x)−mρt(x)e

−(φ∗ρt)(x) + λ

in the space L∞(Rd, dx) (at least on (0, T )).
The existence and uniqueness of nonnegative solutions to (3.28) may be done using

the same approaches as in [17, 10]. We will realize this in a sequel paper.

Remark 3.3. It is worth noting that the equation (3.28) may have one or three positive
stationary solutions depending on values of the parameters. Indeed, if ρt(x) ≡ ρ > 0 is
a stationary solution to (3.28), then λ = 〈a〉ρ2 +mρ exp(−〈φ〉ρ). Denote x = 〈φ〉ρ > 0,

c = λ〈φ〉
m

, b = 〈a〉
m〈φ〉 ; then we will get xe−x + bx2 = c. The function f(x) = xe−x + bx2,

x ≥ 0, may have zero or two points of local extremum. Indeed, f ′(x) = 0 yields 2bx =
(x− 1)e−x. The function g(x) = (x− 1)e−x, x ≥ 0, has the derivative g′(x) = (2−x)e−x

and hence g increases from −1 to e−2 on (0, 2) and decreases for x > 2. The tangent line
to the graph of y = g(x) at a point (x0, g(x0)) which passes through the origin has the
equation y − g(x0) = g′(x0)(x− x0), and thus x = y = 0 yields

−(x0 − 1)e−x0 = (2− x0)e
−x0(−x0), x2

0 − x0 − 1 = 0, x0 =
1 +

√
5

2
> 0.

As a result, if 2b < g′(x0), i.e. if

〈a〉
m〈φ〉 <

3−
√
5

4
exp

(
−1 +

√
5

2

)
,

then the function f(x) has two points of local extremum and, therefore, there exists λ
(and thus c) such that the equation f(x) = c has three solutions. For 2b ≥ g′(x0), it will
have one solution only, for any λ > 0.
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