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LEVEL SETS OF ASYMPTOTIC MEAN OF DIGITS FUNCTION FOR

4-ADIC REPRESENTATION OF REAL NUMBER

M. V. PRATSIOVYTYI, S. O. KLYMCHUK, AND O. P. MAKARCHUK

Abstract. We study topological, metric and fractal properties of the level sets

Sθ = {x : r(x) = θ}
of the function r of asymptotic mean of digits of a number x ∈ [0; 1] in its 4-adic

representation,

r(x) = lim
n→∞

1

n

n∑
i=1

αi(x)

if the asymptotic frequency νj(x) of at least one digit does not exist, were

νj(x) = lim
n→∞

n−1#{k : αk(x) = j, k 6 n}, j = 0, 1, 2, 3.

1. Introduction

Let 2 6 s ∈ N and As = {0, 1, . . . , s − 1} be an alphabet of s-adic number system.
By ∆s

α1(x)α2(x)...αk(x)...
denote the s-adic representation of a number x ∈ [0; 1], i.e.,

x =
α1

s
+
α2

s2
+ · · ·+ αn

sn
+ · · · ≡ ∆s

α1α2...αk...
,

where As 3 αk = αk(x) is the kth s-adic digit of the number x. Note that some numbers
have two s-adic representations such that

∆s
c1...ck−1ck(0)

= ∆s
c1...ck−1[ck−1](s−1),

where (i) is a period in the number representation. These numbers are called s-adic–
rational. The rest of numbers have unique representations and are called s-adic–irra-
tional. The kth digit of the number, as its function, is well defined after agreement to
use the first s-adic representation only, i.e., the representation with period (0).

An asymptotic mean (or simply mean) of digits of the number x is a value r(x) such
that

lim
n→∞

1

n

n∑
i=1

αi(x) ≡ r(x),

(if the limit exists), where As 3 αi are digits of the s-adic representation of the number

x ∈ [0; 1]. The value n−1
n∑
i=1

αi(x) ≡ rn(x) is called relative mean of digits in the s-adic

representation of x.
In this paper we study properties of the function r of asymptotic mean of digits, in

particular, topological, metric, and fractal properties of number sets with a preassigned
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asymptotic mean of digits. Namely, we investigate sets

Sθ ≡

{
x : lim

n→∞

1

n

n∑
i=1

αi(x) = θ ∈ [0; s− 1]

}
,

that are level sets of the function r (indeed, r−1(θ) = Sθ). If θ 6∈ [0; s−1] then it is easily
proved that the set Sθ is empty.

Asymptotic mean of digits of a number x is closely related to the concept of digit
frequency of the number.

Let Ni(x, k) be the number the digits “i”∈ As appears in the s-adic representation
∆s
α1α2...αk...

of the real number x ∈ [0; 1] to kth place including, i.e.

Ni(x, k) = #{j : αj(x) = i, j 6 k}.

The frequency (asymptotic frequency) of a digit “i” in the s-adic representation of a
number x ∈ [0; 1] is the limit (if it exists) such that

νi(x) = lim
k→∞

v
(k)
i ,

where v
(k)
i = k−1Ni(x, k) is called relative frequency of the digit “i” in the s-adic repre-

sentation of a number x.
The frequency function νi(x) of a digit “i” in the s-adic representation of a number

x ∈ [0; 1] is well defined for s-adic–irrational numbers, and, for s-adic–rational numbers,
it is well defined after agreement to use representation with period (0) only.

Different mathematical objects with fractal properties were defined and studied in
terms of frequencies. First of all it is Besicovitch–Eggleston’s sets [3, 6]

E[τ0, τ1, . . . , τs−1] = {x : x = ∆s
α1α2...αk...

, νi(x) = τi > 0, i = 0, s− 1},

the Hausdorff–Besicovitch dimension of the sets is equal to [4] to

α0(E[τ0, τ1, . . . , τs−1]) = −
ln τ τ00 τ τ11 . . . τ

τs−1

s−1
ln s

.

The number x is called normal for basis s if the value νi(x) exists for all i ∈ As
and equals to s−1. The set of all normal for basis s numbers is the only Besicovitch–
Eggleston’s set of positive and even full Lebesgue measure.

Normal for every natural basis s > 2 number x is called normal. According to the
famous Borel’s theorem [5] we see that Lebesgue measure of the set of normal numbers
is equal to 1.

In the papers [1], [11] it was proved that the Hausdorff–Besicovitch dimension of
abnormal and essentially abnormal number sets (i.e. number sets having not frequency
of at least one digit or having not frequencies of all digits respectively) is equal to 1.

If a number x has all digits frequencies then the relationship between asymptotic mean
of digits and digits frequencies of the number x is the following:

r(x) = ν1(x) + 2ν2(x) + · · ·+ (s− 1)νs−1(x).

When s = 2, it is obvious that the asymptotic mean of digits is equal to the frequency
of digit “1”. So we do not examine this case. The case s = 3 was studied in papers
[8, 10]. It is unique since it is the only case where the set Sθ is a union of two disjoint
sets Θ1 and Θ2 such that

Θ1 ≡ {x : frequencies of all digits exist} ,
Θ2 ≡ {x : frequency of any digit does not exist} .
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In cases s > 3 the set Sθ is a union of tree disjoint sets such that

Θ1≡{x : frequencies of all digits exist} ,
Θ2≡{x : frequency of at least one digit exists and of at least one digit does not exist},
Θ3≡{x : frequency of any digit does not exist} .

In this paper we study the case s = 4 since it is the easiest and modeling in the last
class. Our previous paper [9] was devoted to studying properties of the set Θ1, and this
one deals with the sets Θ2 and Θ3.

2. The object of study

Lemma 1. If in the 4-adic representation of a real number x ∈ [0; 1] the frequency of
one digit does not exist, then the frequency of at least one more digit does not exist.

Proof. Suppose the frequency νk(x0) does not exist, i.e., lim
n→∞

Nk(x0,n)
n does not exist.

Since
Nk(x0, n)

n
= 1− Nj(x0, n)

n
− Nm(x0, n)

n
− Nl(x0, n)

n
,

we see that

lim
n→∞

(
Nj(x0, n)

n
+
Nm(x0, n)

n
+
Nl(x0, n)

n

)
does not exist. It means that at least one of the limits lim

n→∞
Nj(x0,n)

n , lim
n→∞

Nm(x0,n)
n or

lim
n→∞

Nl(x0,n)
n , where {j, k, l,m} = {0, 1, 2, 3} do not exist. �

Lemma 2. If in the 4-adic representation of a real number x ∈ [0; 1] the asymptotic
mean of digits, r(x), and at least two 4-adic digits frequencies νi(x), νj(x), where i, j ∈
{0, 1, 2, 3}, exist, then the remaining two 4-adic digits frequencies of the number x exist.

Proof. Consider the system

(1)

{
v
(n)
0 + v

(n)
1 + v

(n)
2 + v

(n)
3 = 1,

v
(n)
1 + 2v

(n)
2 + 3v

(n)
3 = rn.

Let i, j ∈ {1, 2, 3}. Since lim
n→∞

v
(n)
i = νi(x), lim

n→∞
rn = θ, we see that from the second

equation of system (1) it follows that lim
n→∞

v
(n)
k , k ∈ {1, 2, 3} \ {i, j}, exists, i.e. the

frequency νk(x) exists. Then from the first equation of system (1) it follows that ν0(x)
exists.

Let i = 0, j = 1. Then from system (1) we have{
v
(n)
3 = rn + v

(n)
1 − 2v

(n)
0 − 2,

v
(n)
2 = 1− v(n)0 − v(n)1 − v(n)3 = 3 + v

(n)
0 − 2v

(n)
1 − rn,

which implies existence of the frequencies ν2(x) and ν3(x).
Let i = 0, j = 2. Then from system (1) we obtain

v
(n)
3 =

1

2
(rn − v(n)2 + v

(n)
0 − 1),

v
(n)
1 = 1− v(n)0 − v(n)2 − v(n)3 =

3

2
− 3

2
v
(n)
0 − 3

2
v
(n)
2 − rn

2
,

which implies existence of the frequencies ν1(x) and ν3(x).
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Let i = 0, j = 3. Then from system (1) we have{
v
(n)
2 = rn − 2v

(n)
3 + v

(n)
0 − 1,

v
(n)
1 = 1− v(n)0 − v(n)2 − v(n)3 = 2− rn − 2v

(n)
0 + 2v

(n)
3 ,

which implies existence of the frequencies ν1(x) and ν2(x). �

Corollary 1. (from Lemmas 1 and 2). A number x ∈ Sθ can not have frequencies of
only two or of only three 4-adic digits.

From Lemma 1 it follows that if a number does not have frequency of at least one
4-adic digit then it does not have frequency of one more digit, therefore, the number
x ∈ Sθ can not have frequencies of only three digits. According to Lemma 2, if a number
x ∈ Sθ has frequencies of at least two digits then it has frequencies of all digits, therefore,
the number x can not have frequencies of only two 4-adic digits.

Hence, the set Sθ can be represented as a union of three disjoint sets Θ1, Θ2 and Θ3

such that

Θ1 ≡ {x : νi(x) exist,∀i ∈ A4} ,
Θ2 ≡ {x : exist frequency of only one 4-adic digit νi(x), i ∈ A4} ,
Θ3 ≡ {x : νi(x) do not exist,∀i ∈ A4} .

In the following sections we study properties of the sets Θ2 and Θ3.

3. Abnormal numbers that have asymptotic mean of digits

Theorem 1. If θ = 0 or θ = 3, then Θ2 = Θ3 = ∅.

Proof. Let θ = 0. If lim
n→∞

rn(x) = 0, then for any i ∈ {1, 2, 3} the following inequality

holds: 0 6 v
(n)
i (x) 6 v

(n)
1 (x) + 2v

(n)
2 (x) + 3v

(n)
3 (x) = rn(x) → 0, as n → ∞. Therefore,

νi(x) = lim
n→∞

v
(n)
i (x) = 0 and ν0(x) = 1. Hence, Θ2 = Θ3 = ∅.

Let θ = 3. If lim
n→∞

rn(x) = 3, then multiplying the first equation of system (1) by 3 and

subtracting the second equation of the system, we obtain that 3v
(n)
0 +2v

(n)
1 +v

(n)
2 = 3−rn.

Hence 0 6 v(n)i (x) 6 3v
(n)
0 (x)+2v

(n)
1 (x)+v

(n)
2 (x) = 3−rn(x)→ 0 as n→∞. Therefore,

νi(x) = 0, for all i ∈ {0, 1, 2}. Hence ν3(x) = 1 and Θ2 = Θ3 = ∅. �

Lemma 3. Let (sk) be a sequence of positive integers and the following conditions hold:

lim
k→∞

sk = ∞, lim
k→∞

k
k∑
i=1

si

= 0, α1, α2, β1, β2 > 0, α1 6= α2, β1 6= β2. Then there exist

sequences an(α1, α2) and bn(β1, β2) such that an(α1, α2) ∈ {α1, α2} and bn(β1, β2) ∈
{β1, β2} for all n ∈ N and the limits

lim
k→∞

k∑
i=1

[ai(α1, α2) · si]

k∑
i=1

si

and lim
k→∞

k∑
i=1

[bi(β1, β2) · si]

k∑
i=1

si

do not exist.

Proof. Without loss of generality let α2 > α1, β2 > β1,
k∑
i=1

[λsi]

k∑
i=1

si

6

k∑
i=1

λsi

k∑
i=1

si

= λ and

k∑
i=1

[λsi]

k∑
i=1

si

>

k∑
i=1

λ(si − 1)

k∑
i=1

si

= λ− k
k∑
i=1

si

→ λ as k →∞.
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Hence, lim
k→∞

k∑
i=1

[λsi]

k∑
i=1

si

= λ.

Suppose that ε > 0 satisfies α2−ε > α1 +ε and β2−ε > β1 +ε. Let r1, l1 be smallest
positive integers such that for any n > r1 and m > l1 the following inequalities hold:

n∑
i=1

[α2si]

n∑
i=1

si

> α2 − ε and

m∑
i=1

[β2si]

n∑
i=1

si

> β2 − ε.

Denote n1 = max(r1, l1).
Let r2, l2 be smallest positive integers such that for all r2 > n1, l2 > n1 and n > r2,

m > l2,

n1∑
i=1

[α2si] +
n∑

i=n1+1

[α1si]

n∑
i=1

si

< α1 + ε and

n1∑
i=1

[β2si] +
m∑

i=n1+1

[β1si]

n∑
i=1

si

< β1 + ε.

Denote n2 = max(r2, l2).
Let r3, l3 be smallest positive integers such that for any r3 > n2, l3 > n2 and n > r3,

m > l3, the following inequalities hold:

n1∑
i=1

[α2si] +
n2∑

i=n1+1

[α1si] +
n∑

i=n2+1

[α2si]

n∑
i=1

si

> α2 − ε

and
n1∑
i=1

[β2si] +
n2∑

i=n1+1

[β1si] +
m∑

i=n2+1

[β2si]

n∑
i=1

si

> β2 − ε.

Denote n3 = max(r3, l3). And so on.
Let an(α1, α2) = α1 if n ∈ {1, . . . , n1 − 1}, an(α1, α2) = α2 if n ∈ {nk, . . . , nk+1 − 1}

and k is not an even integer; an(α1, α2) = α1 if n ∈ {nk, . . . , nk+1 − 1} and k is an even
integer.

Let bn(β1, β2) = β1 if n ∈ {1, . . . , n1 − 1}, bn(β1, β2) = β2 if n ∈ {nk, . . . , nk+1 − 1}
and k is not an even integer; bn(β1, β2) = β1 if n ∈ {nk, . . . , nk+1 − 1} and k is an even
integer. This is possible since for fixed p following relations hold:

lim
k→∞

k∑
i=p

[λsi]

k∑
i=1

si

= lim
k→∞


k∑
i=1

[λsi]

k∑
i=1

si

−

p−1∑
i=1

[λsi]

k∑
i=1

si

 = λ− 0 = λ.

Denote xn =

n∑
i=1

[ai(α1,α2)si]

k∑
i=1

si

, yn =

n∑
i=1

[bi(β1,β2)si]

k∑
i=1

si

. Suppose the limits lim
k→∞

xn and lim
k→∞

yn

exist. Let δ < min(α2 − α1 − 2ε, β2 − β1 − 2ε). From the Cauchy criterion, it follows
that there are N1, N2 ∈ N such that for any a, b > N1 and c, d > N2 the inequalities
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|xa−xb| < ε and |yc−yd| < ε hold. For a sufficiently large k we have nk > Nj , j ∈ {1, 2},
whence

|xnk+1
− xnk

| = α2 − α1 − 2ε > δ and |ynk+1
− ynk

| = β2 − β1 − 2ε > δ.

This contradiction proves the lemma. �

4. Properties of the set Θ2

Let (sk) be a sequence of positive integers such that

lim
k→∞

sk =∞, lim
k→∞

sk+1

k∑
i=1

si

= 0, lim
k→∞

k
k∑
i=1

si

= 0.

Let ‖τin‖ be a matrix of dimension (4×∞). Consider the following form of a real number
x ∈ [0; 1]:

x̂ = ∆4
0 . . . 0︸ ︷︷ ︸
[τ01s1]

1 . . . 1︸ ︷︷ ︸
[τ11s1]

2 . . . 2︸ ︷︷ ︸
[τ21s1]

3 . . . 3︸ ︷︷ ︸
[τ31s1]︸ ︷︷ ︸

1st block

...0 . . . 0︸ ︷︷ ︸
[τ0ksk]

1 . . . 1︸ ︷︷ ︸
[τ1ksk]

2 . . . 2︸ ︷︷ ︸
[τ2ksk]

3 . . . 3︸ ︷︷ ︸
[τ3ksk]︸ ︷︷ ︸

kth block

...
.

In paper [9] we proved the following three theorems.

Theorem 2. If ‖τin‖ is a matrix of dimension (4 × ∞) such that for all n ∈ N the
following conditions hold: τ0n + τ1n + τ2n + τ3n = 1, τ1n + 2τ2n + 3τ3n = θ, then

lim
n→∞

rn(x̂) = θ.

Theorem 3. If ‖τin‖ is a stochastic matrix of dimension (4 × ∞) and for any fixed
j ∈ {0, 1, 2, 3}, lim

n→∞
τjn = λ, then

νj(x̂) = λ.

Theorem 4. Let (s
(1)
k ), (s

(2)
k ) be sequences of positive numbers such that lim

k→∞
s
(r)
k =∞,

r ∈ {1, 2} and ‖p(1)‖ = ‖p(1)in ‖, ‖p(2)‖ = ‖p(2)in ‖ be stochastic matrices of dimension
(4×∞). Let

x(‖p(r)‖; ‖s(j)k ‖) = ∆4
0 . . . 0︸ ︷︷ ︸
[p

(r)
01 s

(j)
1 ]

1 . . . 1︸ ︷︷ ︸
[p

(r)
11 s

(j)
1 ]

2 . . . 2︸ ︷︷ ︸
[p

(r)
21 s

(j)
1 ]

3 . . . 3︸ ︷︷ ︸
[p

(r)
31 s

(j)
1 ]︸ ︷︷ ︸

1st block

... 0 . . . 0︸ ︷︷ ︸
[p

(r)
0k s

(j)
k ]

1 . . . 1︸ ︷︷ ︸
[p

(r)
1k s

(j)
k ]

2 . . . 2︸ ︷︷ ︸
[p

(r)
2k s

(j)
k ]

3 . . . 3︸ ︷︷ ︸
[p

(r)
3k s

(j)
k ]︸ ︷︷ ︸

kth block

...
.

If lim
k→∞

|s(1)k − s
(2)
k | =∞, then x(‖p(1)‖; ‖s(1)k ‖) 6= x(‖p(2)‖; ‖s(2)k ‖).

If lim
n→∞

3∑
i=0

|p(1)in − p
(2)
in | > 0, then x(‖p(1)‖; ‖s(1)k ‖) 6= x(‖p(2)‖; ‖s(2)k ‖).

Theorem 5. If θ ∈ (0; 3), then the set Θ2 is an everywhere dense, continuum set of zero
Lebesgue measure.

Proof. The well-known Borel’s theorem states that ν0 = ν1 = ν2 = ν3 =
1

4
for almost

all in the sense of Lebesgue measure numbers of [0; 1]. From this fact it follows that
Lebesgue measure of the set Θ2 is equal to zero.

Continuality. Construct a continuum subset of Θ2 such that frequency of the digit 0
exists for all elements (similarly we can construct a continuum subset of Θ2 such that
the frequency of a fixed digit “i”, i ∈ {1, 2, 3}, exists for all elements). Let sk = k
and p = (p0, p1, p2, p3), q = (q0, q1, q2, q3) be stochastic vectors such that p0 = q0,
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p1 + 2p2 + 3p3 = q1 + 2q2 + 3q3 = θ, p1 6= q1, then lim
k→∞

sk = ∞, lim
k→∞

k
k∑
i=1

si

= 0,

lim
k→∞

sk+1

k∑
i=1

si

= 0. From Lemma 3, where α1 = β1 = p1, α2 = β2 = q1, it follows that

there exists a sequence an(p1, q1) such that an(p1, q1) = p1 or an(p1, q1) = q1 for any

n ∈ N and lim
k→∞

k∑
i=1

[ai(p1,q1)si]

k∑
i=1

si

does not exist. Denote τ0k = p0, τ1k = ak(p1, q1). Using

the system {
τ2k + τ3k = 1− p0 − ak(p1, q1),

2τ2k + 3τ3kv
(n)
3 = θ − ak(p1, q1)

we calculate τ2k, τ3k. Namely, τ3k = θ+ak(p1, q1)−2+2p0 τ2k = 3−3p0−θ−2ak(p1, q1).
It is evident that τik, where i ∈ {2, 3} is equal to pi or qi if ak(p1, q1) is equal to p1 or q1,

respectively. From Theorem 3 it follows that ν0(x) = p0. Since lim
k→∞

k∑
i=1

[ai(p1,q1)si]

k∑
i=1

si

does

not exist we obtain that the frequency ν1(x) does not exist either. From Theorem 4 it
follows that different numbers x constructed as specified above correspond to different
pairs of vectors p and q with relevant properties. Since the set of such pairs is a continuum,
we see that the set Θ2 is a continuum.

Everywhere density. Since the condition lim
k→∞

rk(x) = θ does not depend on an ar-

bitrary finite group of first symbols and for any interval [a; b] there exists a cylinder
[∆4

γ1γ2...γr(0)
; ∆4

γ1γ2...γr(3)
] completely contained in it, we see that Θ2 is an everywhere

dense set. �

Theorem 6. If θ ∈ (0; 3), then the Hausdorff–Besicovitch dimension α0(Θ2) of the set
Θ2 is positive, i.e., α0(Θ2) > 0.

Proof. Let (εi) be an arbitrary sequence of zeros and ones, vectors (p0, p1, p2, p3) and
(p0, q1, q2, q3) be stochastic vectors such that p0 > 0, p1 6= q1, p1 + 2p2 + 3p3 = θ =

q1+2q2+3q3, xi = [p0k(i+1)]−[p0ki]−ri, ri =

{
0, if εi = 1

1, if εi = 0
, ti = [p3k(i+1)]−[p3ki].

Consider the system

(2)

{
xi + yi + zi + ti = k − 1,

yi + 2zi + 3ti = [θk(i+ 1)]− [θki],

whence zi = [θk(i+1)]−[θki]−k+1+xi−2yi, yi = 2(k−1)−([θk(i+1)]−[θki])−2xi+ti.
We obtain that

zi
k

=
[{θki}+ θk]

k
− 1 +

1

k
+

[{p0ki}+ p0k]

k
− 2[{p3ki}+ p3k]

k

= θ − 1 + p0 − 2p3 +
[{θki}+ {θk}]

k
+

1

k
+

[{p0ki}+ {p0k}]
k

− 2[{p3ki}+ {p3k}]
k

.
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Since θ− 1 + p0 − 2p3 = p2 and for a sufficiently large k we have zi ∈ N for all i ∈ N .
In the same way,

yi
k

= 2− 2

k
− [{θki}+ θk]

k
− 2[{p0ki}+ p0k]

k
+
ri
k

+
[{p3ki}+ p3k]

k

= 2− θ − 2p0 + 3p3 −
2

k
− [{θki}+ {θk}]

k
− 2[{p0ki}+ {p0k}]

k

+
ri
k

+
[{p3ki}+ {p3k}]

k
.

Since 2 − θ − 2p0 + 3p3 = p1 and for a sufficiently large k we obtain yi ∈ N for all
i ∈ N . Similarly we prove that for a sufficiently large k ∈ N all solutions of the system

(3)


xi + yi + zi + ti = k − 1,

yi + 2zi + 3ti = [θk(i+ 1)]− θki],
xi = [p0k(i+ 1)]− [p0ki]− ri,
ti = [q3k(i+ 1)]− [q3ki],

are positive integers for all i ∈ N .
Let k be a sufficiently large positive integer. Let all solutions of systems (2) and (3)

be positive integers for arbitrary sequence of zeros and ones (εi), i ∈ N . Construct the
number x(εi) as follows:

x(εi) = ∆4
ε1 0 . . . 0︸ ︷︷ ︸

x1

1 . . . 1︸ ︷︷ ︸
y1

2 . . . 2︸ ︷︷ ︸
z1

3 . . . 3︸ ︷︷ ︸
t1︸ ︷︷ ︸

k symbols

...εj 0 . . . 0︸ ︷︷ ︸
xj

1 . . . 1︸ ︷︷ ︸
yj

2 . . . 2︸ ︷︷ ︸
zj

3 . . . 3︸ ︷︷ ︸
tj︸ ︷︷ ︸

k symbols

...

Without loss of generality put p3 > q3, let δ > 0 be such that p3− δ > q3− δ. Let r1 be a
positive integer such that (xi, yi, zi, ti) is a solution of system (2) for any j ∈ {1, 2, . . . , r1}
and

N3(x, kr1)

kr1
=

r1∑
i=1

ti

kr1
=

[p3k(r1 + 1)]

kr1
> p3 − δ,

this is possible since the last value tends to p3 as r1 →∞.
Let r1 < r2 be a positive integer such that (xj , yj , zj , tj) is a solution of system (3)

for any j ∈ {r1 + 1, . . . , r2} and

N3(x, kr2)

kr2
=

r2∑
i=1

ti

kr2
=

[p3k(r1 + 1)]− [q3k(r1 + 1)] + [q3k(r2 + 1)]

kr2
< q3 + δ,

this is possible since the last value tends to q3 as r2 →∞.
Let r2 < r3 be a positive integer such that (xj , yj , zj , tj) is a solution of system (2)

for any j ∈ {r2 + 1, . . . , r3} and

N3(x, kr3)

kr3

= 3
[p3k(r1 + 1)]− [q3k(r1 + 1)] + [q3k(r2 + 1)]− [p3k(r2 + 1)] + [p3k(r3 + 1)]

kr3
>

> p3 − δ,

this is possible since the last value tends to p3 as rk →∞. And so on.

We obtain that

∣∣∣∣N3(x, kri)

kri
− N3(x, kri+1)

kri+1

∣∣∣∣ > p3− q3− 2δ for all i ∈ N . Assume that

lim
i→∞

N3(x, kri)

kri
exists. Hence, we have a contradiction with Cauchy’s criterion. Thus,
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lim
i→∞

N3(x, kri)

kri
does not exist, i.e., the frequency ν3(x(εi)) does not exist. On the other

hand, if kj 6 n 6 k(j + 1) then

N0(x(εi), n)

n
>

j∑
i=1

[p0k(i+ 1)]− [p0ki]

k(j + 1)
=

[p0k(j + 1)]− [p0k]

k(j + 1)

= p0 −
{p0k(j + 1)} − [p0k]

k(j + 1)
→ p0, as j →∞,

N0(x(εi), n)

n
6

j+1∑
i=1

[p0k(i+ 1)]− [p0ki]

kj
=
{p0k(j + 2)} − [p0k]

kj

= p0
j + 2

j
− {p0k(j + 2)} − [p0k]

kj
→ p0, as j →∞,

hence, ν0(x(εi)) = p0. Also

rn(x(εi)) >

j∑
i=1

[θk(i+ 1)]− [θki]

k(j + 1)
=

[θk(j + 1)]− [θk]

k(j + 1)

= θ − {θk(j + 1)} − [θk]

k(j + 1)
→ θ, as j →∞,

rn(x(εi)) 6

j+1∑
i=1

[θk(i+ 1)]− [θki]

kj
=
{θk(j + 2)} − [θk]

kj

= θ
j + 2

j
− {θk(j + 2)} − [θk]

kj
→ θ, as j →∞,

hence, lim
n→∞

rn(x(εi)) = θ, and from Theorem 4, the frequencies ν1(x(εi)) and ν2(x(εi))

do not exist.
Thus, x(εi) ∈ Θ2.
Selecting an arbitrary quantity of (not necessarily consecutive) blocks of number x(εi)

and changing the order of digits (except for εi) inside each block we get either the “old”
number x(εi), or a new number x̃(εi). These numbers belong to Θ2 since Nl(x(εi), kr) =
Nl(x̃(εi), kr) for any r ∈ N and l ∈ {0, 1, 2, 3}. Denote by C(x(εi)) the set of numbers
x̃(εi) obtained from x(εi) by choosing an arbitrary number of blocks and changing the
digit order inside them. It is obvious that the set is a continuum. Denote by C1 a union of
the sets C(x(εi)) with respect to all possible sequences (εi) and show that α0(C1) = 1

2k .
To calculate the Hausdorff–Besicovitch dimension it is sufficient to use covering of

4-adic cylinders. Consider a covering of the set C1 by cylinders of the same rank m. the
α-volume of the covering is equal to

Rαm =

{
2t−1(4−(kt−j))α, if m = kt− j, j ∈ {1, . . . , k − 1},

2t(4−kt)α, if m = kt.

It is clear that Rαkt−1 < Rαkt−j , j ∈ {2, . . . , k − 1} hence, consider an α-covering of the
set C1 with cylinders of rank n = kt− 1.

The Hausdorff’s box–counting α-measure of the set C1 is equal to

Ĥα(C1) = lim
t→∞

2t−1

4(kt−1)α
= 22α−1 lim

t→∞
2t(1−2kα).



LEVEL SETS OF ASYMPTOTIC MEAN OF DIGITS FUNCTION 193

Whence,

Ĥα(C1) =


0, if α >

1

2k
,

∞, if α <
1

2k
.

Therefore, box–counting dimension of the set C1 is equal to α = 1
2k . Let us show that

α0(C1) = 1
2k . Consider an arbitrary finite covering of the set C1 by 4-adic cylinders

{vj}, j ∈ {1, . . . , l}, and prove that if α = 1
2k then the preceding rank covering is not

improvable. Let ui be one of cylinders of the covering. Then |uj | = 3−n for some n ∈ N .
Let n = kp − r, r ∈ {0, . . . , k − 1}, then α-volume of covering of the set C1 ∩ ∆j by
cylinders of rank kp− r +m is equal to

Rαkp−r+m(C1 ∩∆j) =

{
2l−1(4−(kp−r+kl−j))α, if m = kl + r − j, j ∈ {1, . . . , k − 1},

2k(4−(kp−r+kl))α, if m = kl + r, l ∈ N.

Let us show that Rαkp−r+m(C1 ∩ vj) 6 vn = (4−(kp−r))α. It is obvious that Rαk(p+l)−1 <

Rαk(p+l)−j , if j ∈ {2, . . . , k}. Consider an α-covering K ∩∆j by cylinders of rank k(p +

l)− 1. Its volume is equal to

2l−1(4−(kp+3l−1))α.

Since

(
2

4kl

)l
= 1 and

4(1−r)α

2
< 1 we obtain if α =

1

2k
then

2l−1(4−(kp+3l−1))α =
(
4−(kp−r)

)α 4(1−r)α

2

(
2

4kl

)l
6
(

4−(kp−r)
)α

. Hence if α =
1

2k
we

have Ĥα(C1) = Hα(C1) =
1

2k
and we see that the Hausdorff–Besicovitch dimension of

the set C1 is equal to the box–counting dimension of the set C1 ⊂ Θ2, thus α0(Θ2) >

α0(C1) =
1

2k
> 0.

�

5. The set Θ3

Theorem 7. If θ ∈ (0; 3), then the set Θ3 is an everywhere dense, continuum set of zero
Lebesgue measure.

Proof. Lebesgue measure. Since almost all (in the sense of Lebesgue measure) numbers

of the interval [0; 1] are normal, i.e., ν0 = ν1 = ν2 = ν3 =
1

4
[5] we see that Lebesgue

measure of the set Θ3 is equal to zero.
Continuality. Let sk = k, p0 > q0 > 0, p1 > q1 > 0. Suppose that all solutions of the

system 
x+ y + z + t = 1,

y + 2z + 3t = θ,

x = p0 ∨ q0,
y = p1 ∨ q1

are positive.

It is obvious that lim
k→∞

sk =∞, lim
k→∞

k
k∑
i=1

si

= 0 lim
k→∞

sk+1

k∑
i=1

si

= 0. From Lemma 3, where

α1 = p0, α2 = q0, β1 = p1, β2 = q1 it follows that there exist sequences an(p0, q0) = p0
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or an(p0, q0) = q0 and bn(p1, q1) = p1 or bn(p1, q1) = q1 such that for all n ∈ N the limits

lim
k→∞

k∑
i=1

[ai(p0, q0)si]

k∑
i=1

si

and lim
k→∞

k∑
i=1

[bi(p1, q1)si]

k∑
i=1

si

do not exist.
Denote τ0k = ak(p0, q0), τ1k = bk(p1, q1). From following system{

τ0k + τ1k + τ2k + τ3k = 1,

τ1k + 2τ2k + 3τ3k = θ

we obtain τ2k, τ3k, i.e., τ3k = θ − 2 + 2τ0k + τ1k, τ2k = 3− θ − 3τ0k − τ1k.
Since the limits

lim
k→∞

N0(x,
k∑
i=1

si)

k∑
i=1

si

= lim
k→∞

k∑
i=1

[ai(p0, q0)si]

k∑
i=1

si

and

lim
k→∞

N1(x,
k∑
i=1

si)

k∑
i=1

si

= lim
k→∞

k∑
i=1

[bi(p1, q1)si]

k∑
i=1

si

do not exist, the frequencies ν0(x) and ν1(x) do not exist either. Then from Theorem 2
and from Theorem 4 it follows that lim

n→∞
rn(x) = θ and ν2(x), ν3(x) do not exist.

From Theorem 4 it follows that different numbers constructed as indicated above cor-
respond to different pairs (p0, q0) and (p1, q1). Since the set of such pairs is a continuum,
we obtain that set Θ3 is a continuum.

Everywhere density. Since the condition lim
k→∞

rk(x) = θ does not depend on an arbi-

trary finite group of first symbols, and for any interval [a; b] ⊂ [0; 1] there exists a cylinder
[∆4

γ1γ2...γr(0)
; ∆4

γ1γ2...γr(3)
] completely contained in it, we see that Θ3 is an everywhere

dense set. �

Theorem 8. If θ ∈ (0; 3), then the Hausdorff–Besicovitch dimension α0(Θ3) of the set
Θ3 is positive, i.e., α0(Θ3) > 0.

Proof. Let (εi) be an arbitrary sequence of zeros and ones, let p
(1)
0 > p

(2)
0 > 0 and

p
(1)
1 > p

(2)
1 > 0, let solutions of the system

x+ y + z + t = 1,

y + 2z + 3t = θ,

x = p
(1)
0 ∨ p

(2)
0 ,

y = p
(1)
1 ∨ p

(2)
1

be positive.
Denote

ri =

{
0, if εi = 1,

1, if εi = 0,
r̃i =

{
0, if εi = 0,

1, if εi = 1.
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Similarly to the proof of Theorem 6, we show existence of a sufficiently large positive
integer k such that all solutions of the systems

(4)


xi + yi + zi + ti = k + 1,

yi + 2zi + 3ti = [θk(i+ 1)]− [θki],

xi = [p
(1)
0 k(i+ 1)]− [p

(1)
0 ki]− ri,

ti = [p
(1)
1 k(i+ 1)]− [p

(1)
1 ki]− r̃i,

(5)


xi + yi + zi + ti = k + 1,

yi + 2zi + 3ti = [θk(i+ 1)]− [θki],

xi = [p
(2)
0 k(i+ 1)]− [p

(2)
0 ki]− ri,

ti = [p
(2)
1 k(i+ 1)]− [p

(2)
1 ki]− r̃i

are positive for all i ∈ N .
Let (εi) be a fixed sequence of zeros and ones. Construct a number x(εi) as follows:

x(εi) = ∆4
ε1 0 . . . 0︸ ︷︷ ︸

x1

1 . . . 1︸ ︷︷ ︸
y1

2 . . . 2︸ ︷︷ ︸
z1

3 . . . 3︸ ︷︷ ︸
t1︸ ︷︷ ︸

k symbols

...εj 0 . . . 0︸ ︷︷ ︸
xj

1 . . . 1︸ ︷︷ ︸
yj

2 . . . 2︸ ︷︷ ︸
zj

3 . . . 3︸ ︷︷ ︸
tj︸ ︷︷ ︸

k symbols

...

Let δ > 0 be such that p
(1)
0 − δ > p

(2)
0 + δ, p

(1)
1 − δ > p

(2)
1 + δ.

Let g1 be a positive integer such that (xj , yj , zj , tj) is a solution of system (4) for any

j ∈ {1, 2, . . . , g1} and
N0(x, kg1)

kg1
> p

(1)
0 − δ,

N1(x, kg1)

kg1
> p

(1)
1 − δ.

Let g2 be a positive integer such that (xj , yj , zj , tj) is a solution of system (5) for all

j ∈ {g1 + 1, g1 + 2, . . . , g2} and
N0(x, kg2)

kg2
< p

(2)
0 + δ,

N1(x, kg2)

kg2
< p

(2)
1 + δ.

Let g3 be a positive integer such that (xj , yj , zj , tj) is a solution of system (4) for any

j ∈ {g2 + 1, g2 + 2, . . . , g3} and
N0(x, kg3)

kg3
> p

(1)
0 − δ,

N1(x, kg3)

kg3
> p

(1)
1 − δ. And so on.

Since ∣∣∣∣Na(x, kgj+1)

kgj+1
− Na(x, kgj)

kgj

∣∣∣∣ > p(1)a − p(2)a − 2δ

for all j ∈ N , the limits lim
j→∞

Na(x, kgj)

kgj
, a ∈ {0, 1} do not exist (assuming the converse,

we obtain a contradiction to the Cauchy criterion). Thus, ν0(x(εi)) and ν1(x(εi)) do not
exist.

Let

kj 6 n < k(j + 1),

rn >
[θk(j + 1)]− [θk]

k(j + 1)
= θ − {θk(j + 1)}+ [θk]

k(j + 1)
→ θ,

rn 6
[θk(j + 2)]− [θk]

kj
= θ · j + 2

j
− {θk(j + 2)} − [θk]

kj
→ θ (j →∞).

Hence, rn → θ as n→∞ and from Theorem 4, it follows that the frequencies ν2(x(εi))
and ν3(x(εi)) do not exist, i.e., x(εi) ∈ Θ3.

Selecting an arbitrary quantity of (not necessarily consecutive) blocks of number x(εi)
and changing the order of digits inside each block (except for εi) we obtain either the
“old” number x(εi), or a new number x̃(εi). These numbers are contained in Θ3 since
Nl(x(εi), kr) = Nl(x̃(εi), kr), for any r ∈ N and l ∈ {0, 1, 2, 3}. Denote by C(x(εi)) the
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set of numbers x̃(εi) obtained from x(εi) by choosing an arbitrary number of blocks and
changing digit order inside them. It is evident that the set is a continuum. Denote by
C1 a union of the sets C(x(εi)) of all possible sequences (εi) and show that α0(C1) = 1

2k .

Similarly to the proof of Theorem 6, we show that α0(C1) =
1

2k
.

Thus, α0(Θ3) > α0(C1) > 0. �
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