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FRACTIONAL KINETICS IN A SPATIAL ECOLOGY MODEL

JOSÉ LUÍS DA SILVA, YURI KONDRATIEV, AND PASHA TKACHOV

Abstract. In this paper we study the effect of subordination to the solution of a
model of spatial ecology in terms of the evolution density. The asymptotic behavior
of the subordinated solution for different rates of spatial propagation is studied.
The difference between subordinated solutions to non-linear equations with classical
time derivative and solutions to non-linear equation with fractional time derivative
is discussed.

1. Introduction

First of all we will describe the main concepts concerning kinetic behaviors for in-
teracting particle systems in the continuum. Our description will be based essentially
on [22].

Kinetic equations for classical gases may be derived from the BBGKY hierarchies for
time dependent correlation functions which describe Hamiltonian dynamics of gases, see
e.g. an excellent review by H. Spohn [30]. Making scalings in BBGKY hierarchical chains,
we will arrive in the limiting kinetic hierarchies of Boltzmann or Vlasov type depending
on the particular scaling we use. Both kinetic hierarchies have a common property of
the chaos preservation. Using this property we obtain Boltzmann or Vlasov equation
respectively as non-linear equations for the density of the considered system.

A similar approach may be also applied to Markov dynamics of interacting particle
systems in the continuum as it was proposed in [11]. These dynamics may be described
on the microscopic level by means of the related hierarchical evolution equations for
correlation functions and proper scalings will lead to limiting mesoscopic hierarchies and
corresponding kinetic equations. Again, a common point for the resulting hierarchies is
the chaos preservation property that is a root of the kinetic equation for the density of the
system. Note that this property means that the kinetic state evolution of the system will
be given by a flow of Poisson measures provided the initial state is a Poisson measure. Of
course, a rigorous realization of this scheme (that includes such steps as construction of
the microscopic Markov dynamics, control of the convergence of solutions for the rescaled
evolutions and an analysis of the corresponding kinetic equations) shall be done for each
particular model and is, in general, quite difficult technical problem. At the present
time, this program is realized for a number of Markov dynamics of continuous systems
which includes certain birth-and-death processes, Kawasaki type dynamics, binary jumps
models, see e.g. [11–13].

In the present paper we extend the approach described above to the case of certain
non-Markov dynamics of interacting particle systems in the continuum. Namely, we
will consider hierarchical evolution equations for correlation functions with the Caputo-
Djrbashian fractional time derivatives. From the stochastic point of view, the latter
corresponds to a random time change in the original Markov processes and effectively
leads to a memory effect in the stochastic dynamics. The Vlasov type mesoscopic scaling
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for the fractional hierarchical chains will affect only spatial structure of their generators
and will give the kinetic hierarchies of the same form as before but with fractional time
derivatives. In terms of the corresponding state evolutions we obtain subordinations of
Poisson flows.

The latter means that in the fractional case the kinetic hierarchies are not reduced
just to density evolutions. Time development of correlation functions in such hierarchical
chains is essentially different for all levels of the hierarchy. In other words, the kinetic
description of the dynamics needs to work with all the hierarchy but not only with the
evolution of the density. See also [9] for an overview of the fractional time kinetics.

We consider in more details the Bolker–Pacala model [6]. As mentioned above, in
the Vlasov type scaling limit the first correlation function with the classical time deriv-

ative leads to the limiting density ρt, which satisfies the nonlinear evolution equation
(9). While, the first correlation function with the fractional time derivative leads to the
limiting density ραt , which corresponds to the subordination of ρt (see (11)). Although ρt
solves the nonlinear equation with the classical time derivative, we do not know whether
the subordinated density ραt satisfies an equation with the fractional time derivative. For
instance, in general ραt will not satisfy (9) with the time derivative substituted by the
fractional one (see Proposition 11 in Appendix). Such effect is different to linear equa-
tions, where subordination of a solution of a linear equation with the classical derivative
solves the same linear equation with the fractional derivative (see [1]).

We want to point out that our result is an alternative to the common approach in
nonlinear PDEs, when the classical time derivative is substituted by the fractional one
(see e.g. [35]).

The paper is organized as follow: In Section 2 we give a brief exposition of interacting
particle systems and the related fractional kinetic. Section 3 deals with the Bolker–Pacala
model. In Section 4 we demonstrate that a density propagates slower after subordination.
Subsection 4.2 presents particular examples of propagation rates for the density in the
Bolker–Pacala model.

2. Statistical dynamics and fractional kinetic

We will consider Markov dynamics of interacting particle systems in R
d. The phase

space of such systems is the configuration space over the space R
d which consists of all

locally finite subsets (configurations) of Rd, namely,

(1) Γ = Γ(Rd) :=
{

γ ⊂ R
d
∣

∣|γ ∩ Λ| < ∞, for all Λ ∈ Bb(R
d)
}

,

where Bb(R
d) denotes the family of bounded Borel subsets from R

d. The space Γ is
equipped with the vague topology, i.e., the minimal topology for which all mappings
Γ ∋ γ 7→ ∑

x∈γ f(x) ∈ R are continuous for any continuous function f on R
d with

compact support. Note that the summation in
∑

x∈γ f(x) is taken over only finitely

many points of γ belonging to the support of f . It was shown in [21] that with the vague
topology Γ may be metrizable and it becomes a Polish space (i.e., a complete separable
metric space). Corresponding to this topology, the Borel σ-algebra B(Γ) is the smallest
σ-algebra for which all mappings

Γ ∋ γ 7→ |γΛ| ∈ N0 := N ∪ {0}
are measurable for any Λ ∈ Bb(R

d). Here γΛ := γ ∩ Λ, and | · | the cardinality of a
finite set. Together with Γ is useful to introduce a space Γ0 which consists of all finite
configurations in R

d [23].
A description of each particular model includes a heuristic Markov generator L defined

on functions over the configuration space Γ of the system. We assume that the initial
distribution (the state of particles) in our system is a probability measure µ0 ∈ M1(Γ)

with the corresponding sequence of correlation functions κ0 = (k
(n)
0 )∞n=0, see e.g. [23] .

The distribution of particles at time t > 0 is the measure µt ∈ M1(Γ), and kt = (k
(n)
t )∞n=0
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its correlation functions. If the evolution of states (µt)t≥0 is determined by a heuristic
Markov generator L, then µt is the solution of the forward Kolmogorov equation (or
Fokker-Plank equation (FPE)),

(2)

{

∂µt

∂t = L∗µt,

µt|t=0 = µ0,

where L∗ is the adjoint operator. In terms of the time-dependent correlation functions
(kt)t≥0 corresponding to (µt)t≥0, the FPE may be rewritten as an infinite system of
evolution equations

(3)

{

∂k
(n)
t

∂t = (L△kt)
(n),

k
(n)
t |t=0 = k

(n)
0 , n ≥ 0,

where L△ is the image of L∗ in a space of vector-functions kt = (k
(n)
t )∞n=0. In applications

to concrete models, the expression for the operator L△ is obtained from the operator L

via combinatorial calculations (cf. [23]).
The evolution equation (3) is nothing but a hierarchical system of equations cor-

responding to the Markov generator L. This system is the analogue of the BBGKY-
hierarchy of the Hamiltonian dynamics [4].

Our interest now turns to Vlasov-type scaling of stochastic dynamics for the IPS in a
continuum. This scaling leads to so-called kinetic description of the considered model. In
the language of theoretical physics we are dealing with a mean-field type scaling which
is adopted to preserve the spatial structure. In addition, this scaling will lead to the
limiting hierarchy, which possesses a chaos preservation property. In other words, if the
initial distribution is Poisson (non-homogeneous) then the time evolution of states will
maintain this property. We refer to [11] for a general approach, concrete examples, and
additional references.

There exists a standard procedure for deriving Vlasov scaling from the generator in
(3). The specific type of scaling is dictated by the model in question. The process leading

from L△ to the rescaled Vlasov operator L
△
V produces a non-Markovian generator LV

since it lacks the positivity-preserving property. Therefore instead of (2) we consider the
following kinetic FPE:

(4)

{

∂µt

∂t = L∗
V µt,

µt|t=0 = µ0,

and observe that if the initial distribution satisfies µ0 = πρ0
, then the solution is of the

same type, i.e., µt = πρt
.

In terms of correlation functions, the kinetic FPE (4) gives rise to the following Vlasov-
type hierarchical chain (Vlasov hierarchy):

(5)

{

∂k
(n)
t

∂t = (L△
V kt)

(n)

k
(n)
t |t=0 = k

(n)
0 , n ≥ 0.

Let us consider the so-called Lebesgue-Poisson exponents

k0(η) = eλ(ρ0, η) =
∏

x∈η

ρ0(x), η ∈ Γ0,

as the initial condition, where Γ0 ⊂ Γ is a subspace of finite configurations. Such cor-
relation functions correspond to Poisson measures πρ0

on Γ with the density ρ0. The

scaling L
△
V should be such that the dynamics k0 7→ kt preserves this structure, or more

precisely, kt should be of the same type

(6) kt(η) = eλ(ρt, η) =
∏

x∈η

ρt(x), η ∈ Γ0.
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Relation (6) is known as the chaos preservation property of the Vlasov hierarchy. It
turns out that equation (6) implies, in general, a non-linear differential equation

(7)
∂ρt(x)

∂t
= ϑ(ρt)(x), x ∈ R

d,

for ρt, which is called the Vlasov-type kinetic equation.
In general, if one does not start with a Poisson measure, the solution will leave the

space M1(Γ). To have a bigger class of initial measures, we may consider the cone inside
M1(Γ) generated by convex combinations of Poisson measures, denoted by P(Γ).

Below we discuss the concept of a fractional Fokker-Plank equation and the related
fractional statistical dynamics, which is still an evolution in the space of probability
measures on the configuration space. The mesoscopic scaling of this evolutions leads to a
fractional kinetic FPE. A subordination principle provides for the representation of the
solution to this equation as a flow of measures that is a transformation of a Poisson flow
for the initial kinetic FPE.

We will introduce the fractional statistical dynamics for a given Markov generator L by
changing the time derivative in the FPE to the Caputo-Djrbashian fractional derivative
D

α, α ∈ (0, 1) see e.g. [2]. The resulting fractional Fokker-Planck dynamics (if it exists)
will act in the space of states on Γ, i.e., it will preserve probability measures on Γ. The
fractional Fokker-Planck equation (FFPE)

(FFPE)

{

D
αµα

t = L∗µα
t ,

µα
t |t=0 = µα

0

describes a dynamical system with memory in the space of measures on Γ. The corres-
ponding evolution no longer has the semigroup property. However, if the solution µt of
equation (4) exists, then the subordination principle [1] gives us a motivation to consider
the following family of measures as a solution to FFPE:

(8) µα
t =

∫ ∞

0

Φα(τ)µtατ dτ,

where Φα is a special case of the Wright function [1, 20, 24–26,33]. It is easy to see that
µα
t is the well defined flow of measures. The FFPE equation may be written in terms

of time-dependent correlation functions as an infinite system of evolution equations, the
so-called hierarchical chain

{

D
αk

(n)
α,t = (L△kα,t)

(n),

k
(n)
α,t |t=0 = k

(n)
α,0, n ≥ 0.

The evolution of the correlation functions should be expected to be given by the subor-
dination principle. More precisely, if the solution kt of equation (5) exists, then we may
consider

kα,t =

∫ ∞

0

Φα(τ)ktατ dτ.

Contrary to the subordination of the measure flow, this transformation of the correlation
functions dynamics needs to be justified by certain a priori information concerning the
bounds on kt. In many particular models this information may be obtained due to the
construction of the statistical dynamics (as in the model considered below).

As in the case of Markov statistical dynamics addressed above, we may consider
Vlasov-type scaling in the framework of the FFPE. We know that the kinetic statis-
tical dynamics for a Poisson initial state πρ0

is given by a flow of Poisson measures

R+ ∋ t 7→ µt = πρt
∈ M1(Γ),

where ρt is the solution to the corresponding Vlasov kinetic equation. Then the fractional
kinetic dynamics of states may be obtained as the subordination of this flow. Specifically,
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we consider the subordinated flow

µα
t :=

∫ ∞

0

Φα(τ)µtατ dτ.

The family of measures µα
t is no longer a Poisson flow. We would like to analyze the

properties of these subordinated flows to distinguish the effects of fractional evolution.
It is reasonable to study the properties of subordinated flows from a more general point
of view when the evolution of densities ρt(x) is not necessarily related to a particular
Vlasov-type kinetic equation.

3. Microscopic spatial ecological model

Let us consider a spatial ecological model a.k.a. the Bolker-Pacala one, for the intro-
duction and detailed study of this model see [6, 11–13, 17]. Below we formulate certain
results from these papers concerning the Markov dynamics and mesoscopic scaling in the
Bolker-Pacala model.

The heuristic generator in this model is

(LF )(γ) =
∑

x∈γ

(

m+
∑

y∈γ\x

a−(x− y)
)

[F (γ \ x)− F (γ)]

+
∑

x∈γ

∫

Rd

a+(x− y)[F (γ ∪ y)− F (γ)]dy.

Here m > 0 is the mortality rate, a− and a+ are competition and dispersion kernels resp.
Assumptions concerning these kernels we will fix later.

A standard calculation leads to the description of the correlations functions dynamics
{

∂kt

∂t = L△kt,

kt|t=0 = k0.

As a result of the mesoscopic scaling we arrive in the following chain of equations:

{

∂kt

∂t = L
△
V kt,

kt|t=0 = k0.

This evolution of correlations functions exists in a scale of Banach spaces. We know that
if k0 = eλ(ρ0, ·), then the solution of the above equation (chaos propagation property) is
given by

kt = eλ(ρt, ·).
Under certain assumptions on the kernels a±, the density ρt corresponding to a spatial
ecologic logistic model, see [11], [13] and references therein, satisfies the following non-
linear, non-local kinetic equation, x ∈ R:

(9)
∂ρt(x)

∂t
=
(

a+ ∗ ρt
)

(x)−mρt(x)− ρt(x)
(

a− ∗ ρt
)

(x), ρt(x)|t=0 = ρ0(x),

where the initial condition ρ0 is a bounded function. See [29] for important applications
of this model in various areas of science. Next step is to consider the FFPE with Caputo-
Djrbashian derivative

{

D
α
t µ

α
t = L△µt,

µt|t=0 = µ0.

The corresponding evolutions for correlation functions for the Vlasov scaling is
{

D
α
t kt,α = L

△
V kt,α,

kt,α|t=0 = k0,α,
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which is a non-Markov evolution. We would like to study some properties of the evolution
kt,α. The general subordination principle gives

(10) kt,α(η) =

∫ ∞

0

Φα(τ)ktατ (η) dτ, η ∈ Γ0,

which is a relation to all orders of the correlation functions. In particular, the density of
“particles” is given

ραt (x) = k
(1)
t,α(x).

The general subordination principle (10) gives

(11) ραt (x) =

∫ ∞

0

Φα(τ)ρtατ (x) dτ.

From this representation we shall derive an effect of the fractional derivative onto the
evolution of the density.

4. Properties of the subordinated density

In this section we study long-time behavior of the subordinated density (11). In
Theorem 1 we demonstrate that a function propagates slower after subordination. Then
we consider examples of subordinated traveling waves and solutions to (9).

4.1. Abstract case. For any 0 < α ≤ 1 and u : R × R+ −→ [0, 1], uα denotes the
subordination of u by the density Φα and is given by (11), namely,

(12) uα(x, t) =

∫ ∞

0

Φα(τ)u(x, t
ατ) dτ, (x, t) ∈ R× R+.

Roughly speaking, the following theorem states that if the level set of u is located at
η(t) ∈ R, then the level set of uα is located at η(ktα), where k is a constant which
depends on the level set of uα.

Theorem 1. Let u : R+ × R+ → [0, 1] be a continuous function and η : R+ → R+ be

monotonically increasing to infinity such that, for any ε ∈ (0, 1),

lim
t→∞

sup
x≥η(t+εt)

u(x, t) = 0,(13)

lim
t→∞

inf
0≤x≤η(t−εt)

u(x, t) = 1.(14)

Then, for any λ ∈ (0, 1), there exists T = T (λ) such that, for all t ≥ T , the level set

θλ,t = {x|uα(x, t) = λ} is non-empty and compact, and the following asymptotic behavior

holds

(15) sup
x∈θλ,t

∣

∣

∣

∣

η−1(x)

tα
− k

∣

∣

∣

∣

→ 0, t → ∞,

where k = k(λ) is such that
∫∞

k
Φα(τ) dτ = λ.

Remark 2. Since θλ,t is compact, then (15) yields

min{x|x ∈ θλ,t} = η
(

ktα + o(tα)
)

, t → ∞,

max{x|x ∈ θλ,t} = η
(

ktα + o(tα)
)

, t → ∞.

Remark 3. Note that (15) gives more information about asymptotic behavior of uα, then
it was assumed in (13) and (14) for u. This may be explained as follows. First, notice
that if T = tατ is fixed, then τ = T

tα is decreasing in t. Therefore, for any fixed x ≥ 0,
the family {∆(x, t, ε)}t>0,

∆(x, t, ε) = {τ |x ∈
(

η(tατ − εtατ), η(tατ + εtατ)
)

}
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is also decreasing in t and the contribution in (12) of the interval of time ∆(x, t, ε), for
which the value u(x, tατ) can not be estimated, narrows as t increases.

Proof of Theorem 1. The proof is divided into three steps. In a first step we show that
it suffices to consider u, which is decreasing in x on R+. In a second step we obtain
the asymptotic in t of uα

(

η(ktα), t
)

for a given k ∈ (0,∞). In a third step we use the
information derived in the second step to acquire the asymptotic for θλ,t claimed in the
theorem.
Step 1. Let us introduce the following functions:

ū(x, t) = sup
y≥x

u(y, t),
¯
u(x, t) = inf

0≤y≤x
u(y, t), x ≥ 0, t ≥ 0.

Obviously ū and
¯
u are decreasing in x on R+ and

¯
u ≤ u ≤ ū. Moreover

1 ≥ inf
0≤x≤η(t−εt)

ū(x, t) ≥ inf
0≤x≤η(t−εt)

u(x, t) =
¯
u
(

η(t− εt), t
)

→ 1, t → ∞,

0 ≤ sup
x≥η(t+εt) ¯

u(x, t) ≤ sup
x≥η(t+εt)

u(x, t) = ū
(

η(t+ εt), t
)

→ 0, t → ∞.

Therefore,
¯
u and ū also satisfy (13)–(14) and, without loss of generality, one can assume

that, for any t ≥ 0, u is decreasing in x on R+.
Step 2. Let ε > 0 be given, then for any fixed k ∈ (0,∞), one has

uα
(

η(ktα), t
)

=

∫ ∞

0

Φα(τ)u
(

η(ktα), tατ
)

dτ

=

∫ k/1+ε

0

Φα(τ)u

(

η

(

(1 + ε)
ktα

1 + ε

)

, tατ

)

dτ

+

∫ ∞

k/1−ε

Φα(τ)u

(

η

(

(1− ε)
ktα

1− ε

)

, tατ

)

dτ

+

∫ k/1−ε

k/1+ε

Φα(τ)u
(

η(ktα), tατ
)

dτ

=: I1 + I2 + I3.

We estimate each of the above integrals. Taking into account the monotonicity of u and
the assumptions (13)–(14) the following estimate for I1 holds:

0 ≤ I1 ≤
∫ k/1+ε

0

Φα(τ)u (η ((1 + ε)τtα) , tατ) dτ

≤
∫ k/1+ε

0

Φα(τ)

(

sup
x≥η((1+ε)τtα)

u
(

η(x), tατ
)

)

dτ

→ 0, t → ∞.

In a similar way we obtain for I2
∫ ∞

k/1−ε

Φα(τ) dτ ≥ I2 ≥
∫ ∞

k/1−ε

Φα(τ)u (η ((1− ε)τtα) , tατ) dτ

≥
∫ ∞

k/1−ε

Φα(τ)

(

inf
0≤x≤η((1−ε)τtα)

u(η(x), tατ)

)

dτ,

and by (14), it is clear that

I2 →
∫ ∞

k/1−ε

Φα(τ) dτ, t → ∞.
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Finally, it is easy to prove that

|I3| ≤
∫ k/1−ε

k/1+ε

Φα(τ) dτ.

Putting all together and letting ε → 0, we obtain

(16) lim
t→∞

uα
(

η(ktα), t
)

=

∫ ∞

k

Φα(τ) dτ =: λ.

Notice that if 0 < k̃ < k < ∞, then

lim
t→∞

uα
(

η(k̃tα), t
)

=

∫ ∞

k̃

Φα(τ) dλ = λ̃ > λ.

Step 3. We now consider the level set θλ,t = {x|uα(x, t) = λ}, for λ ∈ (0, 1). By (12), for
any t ≥ 0, uα is continuous in x on R+. By (16), for any δ > 0, there exists T = T (λ, δ)
such that, for all t ≥ T , θλ,t is non-empty, closed and bounded, and for all x ∈ θλ,t,

η
(

(k − δ)tα
)

≤ x ≤ η
(

(k + δ)tα
)

.

Due to the monotonicity of η, for all x ∈ θλ,t, one has

k − δ ≤ η−1(x)

tα
≤ k + δ.

This completes the proof. �

Remark 4. Using a reflection of the function u, namely ũ : R × R+ → [0, 1], (x, t) 7→
ũ(x, t) := u(−x, t), we could obtain the propagation information on R−.

4.2. Long-time behavior. Here and in what follows without loss of generality we may
assume that the nontrivial constant solution to (9) equals 1, namely

‖a+‖L1 −m

‖a−‖L1

= 1.

Indeed, if ‖a+‖L1 < m, then any solution to (9) with a bounded initial condition will
tend to zero, as time tends to infinity (see e.g. [14]). For the case ‖a+‖L1 = m we refer
the reader to [31,32]. If ‖a‖L1 > m, then nontrivial long-time behavior of the solution is
possible. In this case one can always normalize (9).

Now we will give concrete examples of propagating solutions to (9) and study the
asymptotic behavior in time of the corresponding subordinations.

Here and subsequently ρ will denote a continuous solution to (9) with an initial con-
dition ρ0. The corresponding subordination of ρ, defined by (12), will be denoted by ρα.
For any λ ∈ (0, 1), we will denote by θλ,t the level set {x|ρα(x, t) = λ}. Let us introduce
the following notation of the bilateral Laplace transform

(17)
(

La+
)

(λ) :=

∫

R

a+(x)eλx dx.

If there exists λ0 > 0 such that
(

La+
)

(λ0) < ∞ and the initial condition ρ0 is expo-
nentially bounded, then it is known (see [14]) that the solution to (9) propagates with a
constant speed. In this case we consider the following examples.

Example 5 (Monotone traveling wave). A function ρ : R×R+ → [0, 1], which is a solution
to (9), is said to be a (monotone) traveling wave with a speed c ∈ R if and only if there
exists a right-continuous decreasing function ϕ : R → [0, 1], called the profile for the
traveling wave, such that ϕ(−∞) = 1, ϕ(∞) = 0 and, for all t ≥ 0,

ρ(x, t) := ϕ(x− ct), a.a. x ∈ R.
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Theorem 4.9 and Theorem 4.33 in [14] provide existence and uniqueness results for the
traveling waves to the equation (9) (see also [7, 8, 28, 34] for similar equations). Namely,
under additional assumptions there exists c∗ ∈ R, such that for all c ≥ c∗ there exists a
unique monotone traveling wave and it does not exist if c < c∗.

It is proved in [14, Theorem 4.23], that the following formula for c∗ holds:

(18) c∗ = inf
λ>0

(

La+
)

(λ)−m

λ
,

where La+ is defined by (17).
By [14, Proposition 4.11, Corollary 4.12], the profile ϕ of the traveling wave is of the

class C∞
b , for c 6= 0, and it is continuous otherwise. By [14, Theorem 3.9], ϕ is a strictly

decreasing function. Therefore, for any λ ∈ (0, 1), the level set θλ,t consists of one point,
which we also denote by θλ,t. By Theorem 1 with η(t) = ct, the following asymptotic for
θλ,t holds

θλ,t = cktα + o(tα), t → ∞; λ :=

∫ ∞

k

Φα(τ) dτ.

Indeed, if c > 0 the result is straightforward. If c < 0, one can apply Theorem 1 to
u(x, t) = 1− ϕ(ct− x). If c = 0, then ρα(x, t) = ρ(x, t) = ϕ(x).

In conclusion, if c 6= 0, then the subordinated traveling wave does not have a constant
in time profile, since, as smaller a level set is, as faster it moves. The corresponding
propagation becomes sub-linear and decreasing for α ∈ (0, 1).

Example 6 (Exponential decay). Let us now assume that the initial condition ρ0 be such
that, for all λ > 0,

sup
x≥0

ρ0(x)e
λx < ∞.

Then, by [14, Theorem 5.4, Theorem 5.10] the corresponding solution to (9) satisfies
(13) and (14) of Theorem 1, for η(t) = c∗t, where c∗ is defined by (18). Therefore the
subordination of ρ will have the following asymptotic:

sup
x∈θλ,t

∣

∣

∣

∣

x

c∗tα
− k

∣

∣

∣

∣

→ 0, t → ∞, where λ :=

∫ ∞

k

Φα(τ) dτ.

In contrast to the previous examples, if for all λ > 0,
(

L(a+ ∗ρ0)
)

(λ)=∞, and both a+

and ρ0 are regular enough, then the propagation of the corresponding solution ρ to (9)
will be accelerating in time (for details see [15,16]). In this case ρ will satisfy conditions
(13) and (14) with η defined as follows

(19) ln η(t) ∼ ln
(

a+ ∗ ρ0
)(−1)

(e−βt), t → ∞.

where β := ‖a+‖L1 −m and f (−1) denotes inverse of a function f . Note that η may be
defined up to a logarithmic equivalent: ln η̃(t) ∼ ln η(t), t → ∞.

Example 7. Let ρ0 ∈ L1(R) and ρ0(x) ≤ Ca+(x), x ≥ x0, for some C, x0 > 0. In this
case η will depend on a+. For β := ‖a+‖L1 − m, x ≥ x0, p > 0, q > 1, γ ∈ (0, 1) the
following examples hold [15,16] (see also [5, 18]),

a+(x) = x−q, η(t) = exp
(βt

q

)

;

a+(x) = exp
(

− p(lnx)q
)

, η(t) = exp
(

(βt

p

)
1
q

)

;

a+(x) = exp(−xγ), η(t) = (βt)
1
γ ;

a+(x) = exp
(

−x(lnx)−q
)

, η(t) = βt(ln t)q.
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Remark 8. It is worth pointing out that if a+(x) = exp(−xγ), α ∈ (0, 1), then ρ

propagates as η(t) = (βt)
1
γ , so it accelerates. On the other side ρα propagates as

η(ktα) = γ
√
kβt

α
γ . In particular, if α < γ, then the propagation of ρα is sub-linear,

if α = γ, it is linear, and for α > γ, it is super-linear.

Example 9. Let ρ0 ∈ L1(R) and a+(x) ≤ Cρ0(x), x ≥ x0. Then the previous examples
hold with a+ substituted by ρ0.

Remark 10. We could consider ρ0 decreasing on R (instead of ρ0 ∈ L1(R)). Then,
Examples 7 and 9 hold with a+(x) substituted by

∫∞

x
a+(y)dy. The coefficients p and

q would be changed in the first two examples of η in this case. We refer the reader
to [15,16] for details.

Appendix A. A remark on the logistic equation

Let Eα be the Mittag-Leffler function. In particular there exists a probability density
Φα on R+ such that the Mittag-Leffler function is the Laplace transform of Φα (see [27]),
namely

(20) Eα(−z) =

∫ ∞

0

Φα(τ)e
−zτdτ.

If ρ0 ≡ const, then for all t ≥ 0 the corresponding solution ρ(·, t) to (9) is also constant
is space (see [14, Corollary 2.4]). Hence for ‖a+‖L1 −m = 1, ‖a−‖L1 = 1, the function
u(t) ≡ −ρ(·, t) satisfies the following logistic ODE:

(21)
∂u

∂t
= −u+ u2,

where u(0) = u0 > 0. The subordinated function uα(t) is defined by (12). The following
proposition holds.

Proposition 11. Let 0 < u0 < 1
2 , and u be the corresponding solution to (21). Then

the following asymptotics hold, as t → ∞,

uα(t) ∼ κ1

Γ(1− α)tα
, D

α
t u

α(t) ∼ − κ2

Γ(1− α)tα
,

where B = u0

1−u0
, κ1 = ln 1

1−B and κ2 = B
1−B are positive constants.

In particular,

D
α
t u

α(t) + uα(t)− (uα)2(t) =
κ1 − κ2

Γ(1− α)
t−α + o(t−α)

= (κ1 − κ2)u
α(t) + o(uα(t)), t → ∞.(22)

Proof. First we note that 0 < u0 < 1
2 if and only if 0 < B < 1.

The following explicit formula for u holds:

u(t) =
u0

u0 + et(1− u0)
=

u0e
−t

u0e−t + (1− u0)

= Be−t 1

Be−t + 1
= Be−t

∑

j≥0

(−1)jBje−jt

= −
∑

j≥1

(−1)jBje−jt, t > 0.(23)

From now on we assume that 0 < B < 1, or equivalently 0 < u0 < 1
2 . By (23) and

(20), one has

(24) uα(t) = −
∫ ∞

0

Φα(τ)
∑

j≥1

(−1)jBje−jtατdτ = −
∑

j≥1

(−1)jBjEα(−jtα).
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Since the Mittag-Leffler function is entire and

(25) Eα(−z) ∼ 1

Γ(1− α)z
, z → ∞,

then Eα(−z) is bounded, for z ≥ 0. Therefore 0 < B < 1 yields that all series from now
on will be absolutely convergent, for any t > 0.

We note that, for any j ≥ 1,

BjEα(−jtα)−Bj+1Eα(−(j + 1)tα) ≥ Bj

∫ ∞

0

Φα(τ)(e
−jτtα − e−(j+1)τtα) dτ > 0.

Hence, for any n ≥ 1,

−
2n
∑

j=1

(−1)jBjEα(−jtα) ≤ uα(t) ≤ −
2n+1
∑

j=1

(−1)jBjEα(−jtα).

In particular, for any n ≥ 1, (25) yields,

0 < − 1

Γ(1− α)

2n
∑

j=1

(−1)j
Bj

j
≤ lim inf

t→∞
tαuα(t)

≤ lim sup
t→∞

tαuα(t) ≤ − 1

Γ(1− α)

2n+1
∑

j=1

(−1)j
Bj

j
.

Therefore,

lim
t→∞

tαuα(t) = − 1

Γ(1− α)

∞
∑

j=1

(−1)j
Bj

j
= − ln(1−B)

Γ(1− α)
.

Since v(t) = Eα(−λtα) solves

D
α
t v(t) = −λv(t), t > 0; v(0) = 1,

the following equation holds:

D
α
t u

α(t) =
∑

j≥1

(−1)jjBjEα(−jtα), t > 0.

We note that, for j ≥ B
1−B ,

jBjEα(−jtα)− (j + 1)Bj+1Eα(−(j + 1)tα)

=
(

jBj − (j + 1)Bj+1
)

Eα(−jtα) + (j + 1)Bj+1
(

Eα(−jtα)

− Eα(−(j + 1)tα
)

= (j + 1)Bj(
j

j + 1
−B)Eα(−jtα) + (j + 1)Bj+1

×
∫ ∞

0

Φα(τ)(e
−jτtα − e−(j+1)τtα) dτ > 0.

Thus, for any n ≥ B
2(1−B) ,

2n+1
∑

j=1

(−1)jjBjEα(−jtα) ≤ D
α
t u

α(t) ≤
2n
∑

j=1

(−1)jjBjEα(−jtα)
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In particular, for any n ≥ 1, (25) yields,

0 <
1

Γ(1− α)

2n+1
∑

j=1

(−1)jBj ≤ lim inf
t→∞

tαDα
t u

α(t)

≤ lim sup
t→∞

tαDα
t u

α(t) ≤ 1

Γ(1− α)

2n
∑

j=1

(−1)jBj .

As a result, one has

lim
t→∞

tαDα
t u

α(t) =
1

Γ(1− α)

∞
∑

j=1

(−1)jBj = − B

Γ(1− α)(1−B)
.

The proof is fulfilled. �

Corollary 12. The function uα does not satisfy (21) with the fractional time derivative.
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