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WEAK-COUPLING LIMIT FOR ERGODIC ENVIRONMENTS

MARTIN FRIESEN AND YURI KONDRATIEV

Abstract. The main aim of this work is to establish an averaging principle for a

wide class of interacting particle systems in the continuum. This principle is an
important step in the analysis of Markov evolutions and is usually applied for the
associated semigroups related to backward Kolmogorov equations, c.f. [27]. Our ap-
proach is based on the study of forward Kolmogorov equations (a.k.a. Fokker-Planck

equations). We describe a system evolving as a Markov process on the space of finite
configurations, whereas its rates depend on the actual state of another (equilibrium)
process on the space of locally finite configurations. We will show that ergodicity

of the environment process implies the averaging principle for the solutions of the
coupled Fokker-Planck equations.

1. Introduction

This work is devoted to the study of interacting particle systems with a continuous
state space, say Rd. Particles are supposed to be indistinguishable completely determined
by their positions denoted by x ∈ Rd. Particular models are used in various fields such
as physics, chemistry, ecology, medicine and even social sciences, where it is usually
supposed that particles are subject to some Markovian dynamics including elementary
events such as birth, deaths and jumps. A rigorous study of these models by stochastic
differential equations is, e.g., performed in [22, 15, 5, 16, 32, 20] while analytic tools have
been used in [6, 26, 7, 9]. Note that all models mentioned above assume that the total
number of particles is finite at any moment of time, i.e. they are modeled on the state
space of locally finite configurations

Γ0 = {η ⊂ Rd | |η| <∞},

where |A| denotes the number of elements in the set A. Such space can be equipped with
a natural topology such that it becomes a locally compact Polish space.

In this work we study such particle system in the presence of an environment described
by another particle system on the space of locally finite configurations

Γ = {γ ⊂ Rd | |γ ∩K| <∞ for all compacts K ⊂ Rd}.

In order to distinguish between Γ and Γ0, we use γ for elements in Γ, while η, ξ, ζ belong
to Γ0. We endow Γ with the smallest topology such that, for any continuous function
f : Rd −→ R with compact support, γ 7−→

∑
x∈γ f(x) is continuous. It can be shown

that Γ is a Polish space, see [23]. Note that, in contrast to Γ0, this space is not locally
compact.

Let us describe the general form of the dynamics (system and environment) studied
in this work. For a fixed configuration of the environment γ ∈ Γ, dynamics of the system
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is supposed to be given by the heuristic Markov operator

(LS(γ)F )(η) =
∑

ξ⊂η

∫

Γ0

(F (η\ξ ∪ η)− F (η))K(γ, ξ, η, dζ),(1.1)

where K(γ, ξ, η, dζ) ≥ 0 describes the infinitesimal transition rate for the elementary
Markov event η 7−→ η\ξ ∪ ζ. Such transition rate should satisfy some reasonable as-
sumptions, and can be seen as a continuum analogue of the Kolmogorov matrix known
from the theory of Markov chains on countable state spaces. Denote by LE the Markov
generator for the Markov evolution of the environment on Γ, i.e. an unbounded operator
acting on a suitable class of functions F : Γ −→ R. The corresponding Markov pro-
cess for the joint evolution, system and environment, can be formally obtained from the
(backward) Kolmogorov equation

d

dt
Ft =

(
LS + LE

)
Ft, Ft|t=0 = F0, t ≥ 0,(1.2)

where Ft : Γ0 × Γ −→ R, LS = LS(γ) is given by (1.1) and acts only on the variable η,
while LE acts only in the γ variable. Note that such description is only heuristic, i.e. in
this generality the corresponding Markov process does not need to exist and, moreover,
equation (1.2) does not need to have any solution at all.

Ignoring for a moment the construction of solutions to (1.2), let us denote by (ηt, γt) ∈
Γ0 × Γ the Markov process obtained by formally solving (1.2). Since LS is assumed to
depend on γ, it is clear that ηt alone is not a Markov process on Γ0. However, for
different regimes of parameters one may still hope that the system process ηt is at least
close to a Markovian process in some reasonable sense. From the mathematical point of
view the latter one results in the requirement to find a certain scaling (ηεt , γ

ε
t ), ε > 0,

and show that ηεt −→ ηt for ε→ 0, where ηt is a Markovian process. Therefore, such an
approximation is a particular case of Markovian limits as discussed in [30].

If the environment process is ergodic with invariant measure µ, then the weak-coupling
limit, which is a particular case of so-called random evolution framework, see, e.g., [28,
29], can be used to approximate ηt by a Markov process obtained from the averaged
Markov operator

(LF )(η) =
∑

ξ⊂η

∫

Γ0

(F (η\ξ ∪ ζ)− F (η))K(ξ, η, dζ),

where K(ξ, η, dζ) =
∫
Γ
K(γ, ξ, η, dζ)dµ(γ). More precisely, consider, for ε ∈ (0, 1), the

scaled (backward) Kolmogorov equation

d

dt
F ε
t =

(
LS +

1

ε
LE

)
F ε
t , F ε

t |t=0 = F0, t ≥ 0,(1.3)

where the initial condition F0 = F0(η) is supposed to be independent of the variable γ.
Then one expects that F ε

t −→ F t as ε→ 0 and F t = F t(η) solves

d

dt
F t = LF t, F t|t=0 = F0(η), t ≥ 0.

Such a formal scheme was established for various situations based on the theory of sto-
chastic equations or on a detailed study of the (backward) Kolmogorov equation. How-
ever, at present there exist no methods for the rigorous study of (1.3).

In this work we propose another approach to study the weak-coupling limit ε → 0.
Namely, let Lµ := L1(Γ0×Γ, λ⊗µ) and consider the evolution of densities obtained from
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the Fokker-Planck equation

d

dt
ρεt (η, γ) =

(
LS +

1

ε
LE

)∗

ρεt , ρεt |t=0 = ρ0 ∈ L1(Γ0, λ),(1.4)

where
(
LS + 1

ε
LE

)∗
denotes the adjoint operator to LS + 1

ε
LE . Note that ρεt describes

the one-dimensional distributions of the corresponding Markov process (ηεt , γ
ε
t ), provided

it exists. Hence we seek to prove that ρεt −→ ρt in Lµ as ε → 0, and, moreover, show
that ρt ∈ L1(Γ0, λ) is independent of γ satisfying the Fokker-Planck equation

d

dt
ρt = L

∗
ρt, ρt|t=0 = ρ0,(1.5)

where L
∗
denotes the adjoint operator to L. In [11] we have shown by a different approach

that for more specific models of birth-and-death type the restriction that the system
dynamics evolves in Γ0 can be dropped, i.e. a similar result was obtained for spatial
birth-and-death processes on the larger state space Γ × Γ. Contrary to this, the result
obtained in this work applies to a significantly larger class of dynamics.

This work is organized as follows. In Section 2 we discuss the construction of Markov-
ian particle systems on Γ0 with rates independent of the environment. Our main result
of this work is then formulated and proved in Section 3. Finally, a particular example is
discussed in the last Section of this work.

2. Some results for finite particle systems

2.1. Space of finite configurations. Set Γ
(0)
0 = {∅} and, for n ≥ 1, Γ

(n)
0 = {η ⊂

Rd | |η| = n}. Then

Γ0 = {η ⊂ Rd | |η| <∞} =

∞⊔

n=0

Γ
(n)
0 ,

where |A| denotes the number of elements in the set A ⊂ Rd. Let us describe the topology

used on Γ0. Denote by (̃Rd)n the collection of all (x1, . . . , xn) ∈ (Rd)n with xi 6= xj for
i 6= j, and set

symn : (̃Rd)n → Γ
(n)
0 , (x1, . . . , xn) 7−→ {x1, . . . , xn}.

A set A ⊂ Γ0 is said to be open iff sym−1
n (A ∩ Γ

(n)
0 ) ⊂ (̃Rd)n is open for all n ≥ 0 in the

relative topology on (Rd)n. It can be shown that Γ0 equipped with this topology is a
locally compact Polish space [4]. Moreover, the corresponding Borel-σ-algebra B(Γ0) is
generated by cylinder sets {η ∈ Γ0 | |η ∩ Λ| = n}, where n ≥ 0 and Λ ⊂ Rd is compact.

The Lebesgue-Poisson measure λ on Γ0 is defined by the relation

∫

Γ0

G(η)dλ(η) = G({∅}) +
∞∑

n=1

1

n!

∫

(Rd)n

G({x1, . . . , xn})dx1 . . . dxn,

where G is any Borel-measurable non-negative function on Γ0. This measure satisfies,
for any measurable function G : Γ0 × Γ0 −→ R, the integration by parts formula

∫

Γ0

∑

ξ⊂η

G(ξ, η\ξ)dλ(η) =

∫

Γ0

∫

Γ0

G(ξ, η)dλ(ξ)dλ(η),(2.1)

provided one side of the equality is finite for |G|, see [19, Appendix].
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2.2. Markovian dynamics on Γ0. In this section we briefly describe Markovian dy-
namics on Γ0 consisting of elementary Markovian events such as

η 7−→ η\ξ ∪ ζ, ζ ⊂ Rd\(η\ξ), ξ ⊂ η.

Such events should occur with infinitesimal transition rate K : Γ0 × Γ0 × Γ0 −→ R+

satisfying

(K) The map (ξ, η, ζ) 7−→ K(ξ, η, ζ) is jointly Borel-measurable and
∫

Γ0

K(ξ, η, ζ)dλ(ζ) <∞, ∀η, ξ ∈ Γ0.

Denote by BM(Γ0) the Banach space of all bounded measurable functions equipped with
the supremum norm. For F ∈ BM(Γ0) define

(AF )(η) =
∑

ξ⊂η

∫

Γ0

(F (η\ξ ∪ ζ)− F (η))K(ξ, η, ζ)dλ(ζ), η ∈ Γ0.(2.2)

Note that AF is pointwisely well-defined but, in general, does not need to be bounded.
Such operator is supposed to describe a pure-jump Markov process on Γ0, which may
have an explosion. This can be seen from the following representation given below. For
η ∈ Γ0 and A ∈ B(Γ0) we define a transition kernel

Q(η,A) :=
∑

ξ⊂η

∫

Γ0

1A(η\ξ ∪ ζ)K(ξ, η, ζ)dλ(ζ)

describing the infinitesimal rate from state η to the set A. The total transition rate is
therefore given by

q(η) := Q(η,Γ0) =
∑

ξ⊂η

∫

Γ0

K(ξ, η, ζ)dλ(η).

Note that (K) implies that q(η) is finite for each η ∈ Γ0. The action of the operator A
can be then rewritten to

(AF )(η) = −q(η)F (η) +

∫

Γ0

F (ξ)Q(η, dξ) =

∫

Γ0

(F (ξ)− F (η))Q(η, dξ).(2.3)

A construction and some properties of the corresponding minimal (sub-)Markov transi-
tion function P : R+ × Γ0 × B(Γ0) −→ [0, 1] was studied in [10, 7, 17]. Based on the
theory of Lyapunov functions, the corresponding transition semigroup, in particular the
Feller property, was recently studied in [18]. Below we provide a construction of the
(sub-)Markov transition function and the associated semigroup based on the theory of
sub-stochastic semigroups.

Denote byM(Γ0) the Banach space of signed Borel measures with finite total variation

‖ν‖ = |ν|(Γ0) = ν+(Γ0) + ν−(Γ0), ν ∈ M(Γ0),

where ν+, ν− denote the Hahn-Jordan decomposition of ν and |ν| := ν+ + ν−. The
(formally) adjoint operator to A should act on M(Γ0). Using the representation (2.3),
it is clear that it should be given by

(Aν)(C) = −

∫

C

q(η)ν(dη) +

∫

Γ0

Q(η, C)ν(dη), C ∈ B(Γ0)

equipped with the domain

D(A) =



ν ∈ M(Γ0)

∣∣∣∣
∫

Γ0

q(η)|ν|(dη) <∞



 .
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A strongly continuous semigroup S(t) on M(Γ0) is called sub-stochastic, if S(t)ν ≥ 0
and ‖S(t)ν‖ ≤ ‖ν‖ whenever 0 ≤ ν ∈ M(Γ0). Then we obtain the following.

Theorem 2.1. Suppose that (K) is satisfied.

(a) The operator (A, D(A)) is well-defined and has an extension (G, D(G)) on M(Γ0)
which is the generator of a sub-stochastic semigroup S(t). Moreover, this semi-

group is minimal in the following sense: Let (S̃(t))t≥0 be another sub-stochastic
semigroup on M(Γ0) with generator being an extension of (G,D(G)). Then

S̃(t)ν ≤ S(t)ν for all 0 ≤ ν ∈ M(Γ0) and t ≥ 0.
(b) There exists a (sub-)Markovian transition function P such that

S(t)ν(C) =

∫

Γ0

P (t, η, C)ν(dη), t ≥ 0, C ∈ B(Γ0).(2.4)

(c) For each ν ∈ M(Γ0) and F ∈ BM(Γ0) the duality
∫

Γ0

S(t)F (η)ν(dη) =

∫

Γ0

F (η)(S(t)ν)(dη), t ≥ 0

holds, where S(t)∗F is given by

S(t)F (η) =

∫

Γ0

F (ξ)P (t, η, dξ), t ≥ 0.(2.5)

(d) S(t) leaves the space L1(Γ0, λ) ⊂ M(Γ0) invariant. Its restriction to L1(Γ0, λ)
is again a strongly continuous semigroup.

Proof. First observe that the multiplication operator (−q,D(A)) given by −qν(C) =
−
∫
C
q(η)ν(dη) generates a positive analytic semigroup of contractions given by

(e−tqν)(C) =

∫

C

e−tq(η)ν(dη), ν ∈ M(Γ0).

Next observe that (B,D(A)) given by

(Bν)(C) =

∫

Γ0

Q(η, C)ν(dη), C ∈ B(Γ0)

is well-defined, positive and satisfies

Bν(Γ0) =

∫

Γ0

Q(η,Γ0)ν(dη) =

∫

Γ0

q(η)ν(dη), 0 ≤ ν ∈ D(A).(2.6)

Hence assertion (a) is a consequence of [31, Theorem 2.1]. Assertion (b) follows from [31,
Section 5], while property (c) can be directly deduced from (2.4) and (2.5). It remains
to prove assertion (d). For a > 0 and ν ∈ M(Γ0) define

R(a)ν(C) =

∫

C

1

a+ q(η)
ν(dη), C ∈ B(Γ0),

which implies that

BR(a)ν(C) =

∫

Γ0

Q(η, C)

a+ q(η)
ν(dη), C ∈ B(Γ0).
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It follows from [31] that the resolvent of (G, D(G)) satisfies

(a− G)−1ν = lim
rր1

R(a)

∞∑

n=0

rn(BR(a))nν, ν ∈ M(Γ0),

where the convergence is with respect to the total variation norm. Next observe that
L1(Γ0, λ) is closed in M(Γ0) such that, for each g ∈ L1(Γ0, λ), one has

‖g‖L1(Γ0,λ) =

∫

Γ0

|g(η)|dλ(η) = ‖gλ‖M(Γ0).

Hence it suffices to show that R(a) and BR(a) leave L1(Γ0, λ) invariant. It is immediate
that R(a)L1(Γ0, λ) ⊂ L1(Γ0, λ). Next let ν = gλ with g ∈ L1(Γ0, λ), and take C ∈ B(Γ0)
with λ(C) = 0. Then

(BR(a)ν)(C) =

∫

Γ0

Q(η, C)
g(η)

a+ q(η)
dλ(η)

=

∫

Γ0

∑

ξ⊂η

∫

Γ0

1C(η\ξ ∪ ζ)K(ξ, η, ζ)dλ(ζ)
g(η)

a+ q(η)
dλ(η)

=

∫

Γ0

∫

Γ0

∫

Γ0

1C(η ∪ ζ)K(ξ, η ∪ ξ, ζ)
g(η ∪ ξ)

a+ q(η ∪ ξ)
dλ(ζ)dλ(ξ)dλ(η)

=

∫

Γ0

∫

Γ0

1C(η)
∑

ζ⊂η

K(ξ, η ∪ ξ\ζ, ζ)
g(η ∪ ξ\ζ)

a+ q(η ∪ ξ\ζ)
dλ(ξ)dλ(η) = 0,

where we have used (2.1) twice. �

The semigroup S(t) is called stochastic, if S(t)ν ≥ 0 and ‖S(t)ν‖ = ‖ν‖ whenever
0 ≤ ν ∈ M(Γ0). This is equivalent to the requirement that P (t, η,Γ0) = 1 for all t, η. It
is worthwhile to mention that without any further assumptions the semigroup S(t) might
be not stochastic, i.e. P (t, ξ,Γ0) < 1 may occur for some t > 0 and ξ ∈ Γ0. Sufficient
conditions for S(t) being stochastic can be found in [7, 31]. We have the following simple
characterization of stochasticity. Other related results are given in [3].

Corollary 2.2. Suppose that (K) is satisfied and let S(t) be the semigroup constructed
above. Then S(t) is stochastic if and only if its generator (G, D(G)) is the closure of
(A, D(A)).

Proof. Suppose that (G, D(G)) is the closure of (A, D(A)). By (2.6) we obtain Aν(Γ0) =
0 for 0 ≤ ν ∈ D(A)). This yields, by approximation, Gν(Γ0) = 0 for 0 ≤ ν ∈ D(G)).
Hence, for 0 ≤ ν ∈ D(G), we obtain

d

dt
‖S(t)ν‖ =

d

dt
S(t)ν(Γ0) = GS(t)ν(Γ0) = 0.

This shows that S(t) is stochastic.
Conversely, suppose that S(t) is stochastic. Take 0 ≤ ν ∈ M(Γ0) and observe that by

S(t)ν ≥ 0 and S(t)ν = ν + G
∫ t

0
S(s)νds we have

ν(Γ0) = ‖ν‖ = ‖S(t)ν‖ = S(t)ν(Γ0) = ν(Γ0) +


G

t∫

0

S(s)νds


 (Γ0), t > 0.
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Hence we obtain, for 0 ≤ ν ∈ D(G),

0 =


G

1

t

t∫

0

S(s)νds


 (Γ0) =


1

t

t∫

0

S(s)Gνds


 (Γ0) −→ Gν(Γ0), t→ 0,

i.e. Gν(Γ0) = 0, where we have used that ν 7−→ ν(Γ0) is continuous in the total variation
norm. Using also that Aν(Γ0) = 0 for 0 ≤ ν ∈ D(A), the assertion follows from [3,
Corollary 3.6]. �

The following is a particular case of [31, Proposition 5.1].

Remark 2.3. Suppose that (K) is satisfied and assume that there exists a measurable
function V : Γ0 −→ R+, and constants c, b > 0 such that

∫

Γ0

(V (ξ)− V (η))Q(η, dξ) ≤ c(1 + V (η))− εq(η), η ∈ Γ0.(2.7)

Then S(t) is stochastic and leaves

MV (Γ0) = {ν ∈ M(Γ0) | ‖ν‖V :=

∫

Γ0

(1 + V (η))dν(η) <∞}

invariant. Moreover, the restriction of S(t) onto MV (Γ0) is strongly continuous.

We close this section with another sufficient condition for S(t) to be stochastic due to
[7, Part I, Theorem, 2.25].

Remark 2.4. Suppose that (K) is satisfied. Moreover, assume that

(i) There a measurable function V : Γ0 −→ R+ and a constant c > 0 such that
∫

Γ0

(V (ξ)− V (η))Q(η, dξ) ≤ cV (η), η ∈ Γ0.

(ii) There exists a sequence of Borel sets (En)n∈N ⊂ Γ0 with En ⊂ En+1 and⋃
n∈N

En = Γ0 such that

sup
η∈En

q(η) <∞, ∀n ∈ N, lim
n→∞

inf
η 6∈En

V (η) = ∞.

Then S(t) is stochastic.

3. The main result

3.1. Description of the environment. The following is our main conditions on the
environment:

(E) There exists a Borel probability measure µ on Γ and a positive semigroup of
contractions TE(t) on L1(Γ, µ), which is assumed to be L1-ergodic, i.e., for each
R ∈ L1(Γ, µ)

‖TE(t)R− PµR‖L1(Γ,µ) −→ 0, t→ ∞,(3.1)

where PµR =
∫
Γ
R(γ)dµ(γ) denotes the average of R with respect to µ.

Such condition has the following interpretation. The environment has an equilibrium
measure µ and, if the environment is in the initial state Rdµ, where R ∈ L1(Γ, µ), then
the time evolution is given by Rtdµ with Rt = TE(t)R. Since, in addition, one has
TE(t)R −→ PµR in L1(Γ, µ), the evolution of densities is ergodic on L1(Γ, µ). The
following result is classical in the theory of Dirichlet forms. It will be used to provide
sufficient examples for condition (E).
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Theorem 3.1. [8, Theorem 1.4.1] Let µ be a Borel probability measure on Γ and let TE
2 (t)

be a symmetric Markov semigroup on L2(Γ, µ), i.e. a strongly continuous semigroup with
TE(t)1 = 1 satisfying

∫

Γ

TE
2 (t)R ·Hdµ =

∫

Γ

R · TE
2 (t)Hdµ, R,H ∈ L2(Γ, µ),

and 0 ≤ TE
2 (t)R ≤ 1 whenever 0 ≤ R ≤ 1. Then TE

2 (t) leaves L1(Γ, µ) ∩ L∞(Γ, µ)
invariant and has, for p ∈ [1,∞), a unique extension TE

p (t) onto Lp(Γ, µ) being a positive
and strongly continuous contraction semigroup. These extensions satisfy

TE
p (t)R = TE

q (t)R, R ∈ Lp(Γ, µ) ∩ Lq(Γ, µ), 1 ≤ p ≤ q <∞

and if 1
p
+ 1

q
= 1, then TE

p (t)∗ = TE
q (t) with TE

∞(t) := TE
1 (t)∗.

Based on the theory of Dirichlet forms, equilibrium gradient diffusions on Γ were
studied in [1, 2]. Equilibrium Glauber dynamics were then studied in [25]. For both
examples it was shown that grand canonical Gibbs measures are invariant measures
and the corresponding symmetric Markov semigroup TE

2 (t) on L2(Γ, µ) was constructed.
Moreover, it was shown that this semigroup is ergodic on L2(Γ, µ), i.e.

‖TE
2 (t)R− PµR‖L2(Γ,µ) −→ 0, t→ ∞, R ∈ L2(Γ, µ).

Let TE(T ) be the strongly continuous semigroup on L1(Γ, µ). Then

‖TE(t)R− PµR‖L1(Γ,µ) ≤ ‖TE
2 (t)R− PµR‖L2(Γ,µ)

for all R ∈ L1(Γ, µ) ∩ L2(Γ, µ), i.e. (3.1) holds on a dense set of functions. Since TE(t)
is a contraction operator, by approximation it also holds for all R ∈ L1(Γ, µ).

3.2. Description of the system. The system is modeled by a Markov process on Γ0

having generator similarly to the one from Section 2. Moreover, we suppose that its rates
depend, in addition, on the configuration of the environment. More precisely, let LS be
for any bounded measurable function F = F (η, γ) given by

(LSF )(η, γ) =
∑

ξ⊂η

∫

Γ0

(F (η\ξ ∪ ζ, γ)− F (η, γ))K(γ, ξ, η, ζ)dλ(ζ),(3.2)

where K(γ, ξ, η, ζ) is supposed to satisfy

(S) K : Γ× Γ0 × Γ0 × Γ0 −→ [0,∞] is jointly Borel-measurable and satisfies
∫

Γ

∫

Γ0

K(γ, ξ, η, ζ)dλ(ζ)dµ(γ) <∞, ∀ξ, η ∈ Γ0.(3.3)

By (3.3) one immediately shows that (3.2) is well-defined for any η ∈ Γ0 and µ-a.a. γ ∈ Γ.
However, since we have not assumed any growth condition on the integral in (3.3), the
resulting function LSF does not need to be bounded. In particular, the corresponding
dynamics may be not conservative, see Section 2 for additional comments. Particular
examples are discussed in the last section of this work, see also [18].

3.3. The main result. As it is already explained in the introduction, we are interested
in the asymptotic regime ε→ 0 for the densities ρεt obtained from (1.4). However, in this
generality it seems hopeless to study the Fokker-Planck equation (1.4) directly. For this
purpose we introduce a certain approximation LS

δ and study first the corresponding limit
ε → 0 when δ > 0 is fixed. Afterwards we take the limit δ → 0 to deduce the desired
result. Below we briefly introduce the main objects of this work. Their properties are
studied afterwards.
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(i) For given δ > 0 we define

Kδ(γ, ξ, η, ζ) := e−δq(γ,η)K(γ, ξ, η, ζ), q(γ, η) =
∑

ξ⊂η

∫

Γ0

K(γ, ξ, η, ζ)dλ(ζ).

Then Kδ and q are measurable, non-negative and, by (3.3), also finite for µ-a.a.
γ. Denote by LS

δ the operator given by (3.2) with K replaced by Kδ and define
another operator on Lµ by

(LS
δ )

∗ρ(η, γ) = −q(γ, η)e−δq(γ,η)ρ(η, γ)

+
∑

ξ⊂η

∫

Γ0

ρ(η\ξ ∪ ζ, γ)e−δq(γ,η\ξ∪ζ)K(γ, ζ, η\ξ ∪ ζ, ξ)dλ(ζ).

(ii) Let us fix the notation for the limiting objects when ε→ 0, i.e. define

Kδ(ξ, η, ζ) :=

∫

Γ

Kδ(γ, ξ, η, ζ)dµ(γ), qδ(η) =
∑

ξ⊂η

∫

Γ0

Kδ(ξ, η, ζ)dλ(ζ)(3.4)

and associated to Kδ consider the Markov (pre-)generator

LδF (η) =
∑

ξ⊂η

∫

Γ0

(F (η\ξ ∪ ζ)− F (η))Kδ(ξ, η, ζ)dλ(ζ).

Finally define another operator on L1(Γ0, λ) by

L
∗

δρ(η) = −qδ(η)ρ(η) +
∑

ξ⊂η

∫

Γ0

ρ(η\ξ ∪ ζ)Kδ(ζ, η\ξ ∪ ζ, ξ)dλ(ζ).

(iii) Finally let us describe the limiting objects when δ → 0. Define

K(ξ, η, ζ) :=

∫

Γ

K(γ, ξ, η, ζ)dµ(γ), q(η) =
∑

ξ⊂η

∫

Γ0

K(ξ, η, ζ)dλ(ζ)(3.5)

and the associated Markov (pre-)generator

LF (η) =
∑

ξ⊂η

∫

Γ0

(F (η\ξ ∪ ζ)− F (η))K(ξ, η, ζ)dλ(ζ).

Finally define another operator on L1(Γ0, λ) by

L
∗
ρ(η) = −q(η)ρ(η) +

∑

ξ⊂η

∫

Γ0

ρ(η\ξ ∪ ζ)K(ζ, η\ξ ∪ ζ, ξ)dλ(ζ).

Below we summarize the main properties of these operators.

Lemma 3.2. Suppose that (S) and (E) are satisfied. Then

(a) For each δ > 0, LS
δ is bounded on L∞(Γ0 × Γ, λ ⊗ µ) and (LS

δ )
∗ is bounded on

Lµ. Moreover, for each F ∈ L∞(Γ0 × Γ, λ⊗ µ) and ρ ∈ Lµ, one has
∫

Γ0×Γ

(LS
δ F )(η, γ)ρ(η, γ)dλ(η)dµ(γ) =

∫

Γ0×Γ

F (η, γ)(LS
δ )

∗ρ(η, γ)dλ(η)dµ(γ).(3.6)

(b) For each δ > 0, Lδ is a bounded on L∞(Γ0, λ) and L
∗

δ is bounded on L1(Γ0, λ).
Moreover, for each F ∈ L∞(Γ0, λ) and ρ ∈ L1(Γ0, µ), one has

∫

Γ0

(LδF )(η)ρ(η)dλ(η) =

∫

Γ0

F (η)(L
∗

δρ)(η)dλ(η).
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(c) The operator L
∗
is well-defined on the domain

D(L
∗
) = {ρ ∈ L1(Γ0, λ) | qρ ∈ L1(Γ0, λ)},

and for all F ∈ L∞(Γ0, λ) and ρ ∈ D(L
∗
) it holds that

∫

Γ0

(LF )(η)ρ(η)dλ(η) =

∫

Γ0

F (η)(L
∗
ρ)(η)dλ(η).

Moreover, the operator (L
∗
, D(L

∗
)) has an extension (G, D(G)) on L1(Γ0, λ)

which is the generator of a sub-stochastic semigroup on L1(Γ0, λ).

Proof. Let us first prove assertion (a). Take F ∈ L∞(Γ0 × Γ, λ⊗ µ), then

|LS
δ F (η, γ)| ≤ 2‖F‖L∞(Γ0×Γ,λ⊗µ)

∑

ξ⊂η

∫

Γ0

Kδ(γ, ξ, η, ζ)dλ(ζ)

= 2‖F‖L∞(Γ0×Γ,λ⊗µ)q(γ, η)e
−δq(γ,η)

≤ ‖F‖L∞(Γ0×Γ,λ⊗µ)
2

eδ
,

i.e. LS
δ is bounded. For (LS

δ )
∗ we apply twice (2.1) to deduce

‖(LS
δ )ρ‖Lµ

≤
1

eδ
‖ρ‖Lµ

+

∫

Γ

∫

Γ0

∫

Γ0

∫

Γ0

|ρ(η ∪ ζ, γ)|e−δq(γ,η∪ζ)K(γ, ζ, η ∪ ζ, ξ)

× dλ(ζ)dλ(ξ)dλ(η)dµ(γ)

=
1

eδ
‖ρ‖Lµ

+

∫

Γ

∫

Γ0

∫

Γ0

∑

ζ⊂η

|ρ(η, γ)|e−δq(γ,η)K(γ, ζ, η, ξ)dλ(ξ)dλ(η)dµ(γ)

=
1

eδ
‖ρ‖Lµ

+

∫

Γ

∫

Γ0

|ρ(η, γ)|e−δq(γ,η)q(γ, η)dλ(η)dµ(γ)

≤ ‖ρ‖Lµ

2

eδ
.

Identity (3.6) follows by a very similar computation using (2.1), details are left for the
reader. Assertion (b) can be shown in exactly the same way, while assertion (c) is a
consequence of Section 2. �

It is worthwhile to mention that (G, D(G)) does not need to be the closure of (L
∗
, D(L

∗
)).

A characterization and sufficient conditions for this property are given in Section 2.
In order to study the Fokker-Planck equation for the joint evolution of scaled densities,

we have first to extend the semigroup TE(t) onto Lµ. Define

D =

{
f =

n∑

k=1

Rkρk

∣∣∣∣ n ∈ N, Rk ∈ L1(Γ, µ), ρk ∈ L1(Γ0, λ)

}
⊂ Lµ.

Note that D ⊂ Lµ is dense, see [21, Proposition 5.5.6]. The next lemma shows that TE(t)
given by assumption (E) can be uniquely extended to an ergodic semigroup on Lµ.

Lemma 3.3. Suppose that condition (E) is satisfied. Then there exists a unique positive

contraction semigroup T̃E(t) on Lµ such that

T̃E(t)f =

n∑

k=1

(TE(t)Rk)ρk, f ∈ D.(3.7)
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Moreover, it holds that

‖T̃E(t)f − P̃µf‖Lµ
−→ 0, t→ ∞,

where P̃µf :=
∫
Γ
f(·, γ)dµ(γ) ∈ L1(Γ0, λ) denotes the averaging with respect to µ. Let

(LE , D(LE)) be the generator of TE(t), (L̃E , D(L̃E)) be the generator of T̃E(t), and
define

D =

{
f =

n∑

k=1

Rkρk

∣∣∣∣ n ∈ N, Rk ∈ D(LE), ρk ∈ L1(Γ0, λ)

}
.

Then D is a core for the generator (L̃E , D(L̃E)) such that

L̃Ef =

n∑

k=1

ρkL
ERk, f ∈ D.

Proof. First observe that Lµ := L1(Γ0 ×Γ, µ⊗ λ) ∼= L1(Γ → L1(Γ0, λ), µ). Define T̃E(t)

by (3.7). Since TE(t) is positive, T̃E(t) has a bounded extension to Lµ with the same

norm, see [21, Proposition 5.5.10]. In particular T̃E(t) is a contraction operator. Since

T̃E(t) is strongly continuous on D, it follows that it is also strongly continuous on all
Lµ. Let us prove the ergodicity. Take f ∈ D, then

‖T̃E(t)f − P̃µf‖Lµ
≤

n∑

k=1

‖TE(t)Rk − PµRk‖L1(Γ,µ)‖ρk‖L1(Γ0,λ) −→ 0, t→ ∞.

Since T̃E(t) is a semigroup of contractions and D dense in Lµ, the assertion is proved.
For the last assertion observe that D is dense in Lµ. Moreover, by (3.7) it follows that

D is also invariant for T̃E(t) and hence it is a core. �

The following is our main result of this work.

Theorem 3.4. Assume that conditions (E) and (S) are satisfied. Then

(a) For any ε > 0 and δ > 0, the operator (LS
δ )

∗ + 1
ε
L̃E equipped with the domain D

is closable and its closure is the generator of a stochastic semigroup T ε,δ(t) on
Lµ.

(b) For any δ > 0 and any ρ ∈ L1(Γ0, λ) ⊂ Lµ one has

lim
ε→0

sup
t∈[0,T ]

‖T ε,δ(t)ρ− etL
∗

δρ‖Lµ
= 0, ∀T > 0.(3.8)

(c) Suppose that (L
∗
, D(L

∗
)) is closable and its closure generates a stochastic semi-

group T (t) on L1(Γ0, λ). Then

lim
δ→0

sup
t∈[0,T ]

‖etL
∗

δρ− T (t)ρ‖L1(Γ0,λ) = 0, ∀T > 0, ρ ∈ L1(Γ0, λ).(3.9)

Proof. (a) First observe that 1
ε
L̃E is, for any ε > 0, the generator of the semigroup

T̃E( t
ε
) on Lµ. Moreover, D is a core for this generator. Since (LS

δ )
∗ is bounded on Lµ,

the sum (LS
δ )

∗+ 1
ε
L̃E is defined on D, it is closable and the closure generates a semigroup

Tε,δ(t) on Lµ. Due to the Trotter product formula this semigroup is sub-stochastic.
(b) The assertion is proved if we can show that [27, Theorem 2.1] is applicable. There-

fore observe that for ρ ∈ Lµ and λ > 0
∥∥∥∥∥∥
λ

∞∫

0

e−λtT̃E(t)ρdt− P̃µρ

∥∥∥∥∥∥
Lµ

≤

∞∫

0

e−s
∥∥∥T̃E

( s
λ

)
ρ− P̃µρ

∥∥∥
Lµ

ds.
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Since T̃E(t) is ergodic on Lµ it follows that, for fixed s ≥ 0, the integrand tends to zero

as λ → 0. Due to ‖P̃µρ‖Lµ
≤ ‖ρ‖Lµ

and ‖T̃E(t)ρ‖Lµ
≤ ‖ρ‖Lµ

the integrand is bounded
by 2‖ρ‖Lµ

e−s and hence dominated convergence implies

P̃µρ = lim
λ→0

λ

∞∫

0

e−λtT̃E(t)ρdt, ρ ∈ Lµ.

The operator P̃µ is a projection on Lµ with range Ran(P̃µ) ∼= L1(Γ0, λ). Following

the notion of [27], observe that Cρ := P̃µ(L
S
δ )

∗ρ = L
∗

δρ is defined on L1(Γ0, λ) and is
additionally bounded. Hence [27, Theorem 2.1] is applicable, i.e. (3.8) is proved.

(c) For the last assertion observe that D(L̃∗) is a core for T (t). By Trotter-Kato
approximation it suffices to show that

‖L
∗

δρ− L
∗
ρ‖L1(Γ0,λ) −→ 0, δ → 0, ρ ∈ D(L

∗
).

Indeed, for any ρ ∈ D(L
∗
), we obtain

‖L
∗

δρ− L
∗
ρ‖

≤

∫

Γ0

|ρ(η)||qδ(η)− q(η)|dλ(η)

+

∫

Γ0

∑

ξ⊂η

∫

Γ0

|ρ(η\ξ ∪ ζ)||Kδ(ζ, η\ξ ∪ ζ, ζ)−K(ζ, η\ξ ∪ ζ, ξ)|dλ(ζ)dλ(η).

For the first term observe that by (3.5) and (3.4) we obtain

|qδ(η)− q(η)| ≤
∑

ξ⊂η

∫

Γ0

|Kδ(ξ, η, ζ)−K(ξ, η, ζ)|dλ(ζ)

≤
∑

ξ⊂η

∫

Γ0

∫

Γ

∣∣∣1− e−δq(γ,η)
∣∣∣K(γ, ξ, η, ζ)dµ(γ)dλ(ζ).

Since the integrand tends pointwise to zero and is bounded by 2K(γ, ξ, η, ζ), we deduce
from dominated convergence

∫

Γ0

|ρ(η)||qδ(η)− q(η)|dλ(η) −→ 0, δ → 0.

The convergence

∫

Γ0

∑

ξ⊂η

∫

Γ0

|ρ(η\ξ ∪ ζ)||Kδ(ζ, η\ξ ∪ ζ, ζ)−K(ζ, η\ξ ∪ ζ, ξ)|dλ(ζ)dλ(η) −→ 0, δ → 0

can be shown in the same way. �

4. Examples

Consider equilibrium diffusions or Glauber birth-and-death Markov dynamics on Γ
for a given invariant (Gibbs) measure µ, more generally suppose that condition (E) is
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satisfied. Let us consider the spatial logistic model with heuristic Markov generator

(LSF )(η, γ) =
∑

x∈η


m(x, γ) +

∑

y∈η\x

a−(x− y)


 (F (η\x, γ)− F (η, γ))

+
∑

x∈η

λ(x, γ)

∫

Rd

a+(x− y)(F (η ∪ y, γ)− F (η, γ))dy.

The statistical dynamics for such model (without the presence of an environment) has
been analyzed, e.g., in [12, 13, 14, 24]. Here m ≥ 0 is the intensity of the death of
particles and λ ≥ 0 describes fecundity effects caused by the environment in the state γ.
Finally a− ≥ 0 is assumed to be symmetric. It describes the competition of particles from
the configuration η ∈ Γ0. The distribution of new particles is described by a symmetric
probability density a+ on Rd. After scaling the averaged dynamics will be given by the
heuristic Markov operator

(LF )(η) =
∑

x∈η


m(x) +

∑

y∈η\x

a−(x− y)


 (F (η\x)− F (η))

+
∑

x∈η

λ(x)

∫

Rd

a+(x− y)(F (η ∪ y)− F (η))dy,

where the averaged intensities are given by

m(x) =

∫

Γ

m(x, γ)dµ(γ), λ(x) =

∫

Γ

λ(x, γ)dµ(γ).

Proceeding as in Section 3, denote by Tε,δ(t) the scaled semigroup on densities Lµ and by

T (t) and etL
∗

δ the semigroups on L1(Γ0, λ). The next result states conditions for which
these semigroups exist and (3.8) holds.

Theorem 4.1. Assume that all intensities a±,m, λ are non-negative, measurable, that
a+ is a probability density and that m(x, ·), λ(x, ·) are integrable with respect to µ for any

x ∈ Rd. Then the semigroups Tε,δ(t), e
tL

∗

δ and T (t) exist and (3.8) holds.

Proof. First observe that η ∈ Γ0 and fixed ξ ⊂ η

q(γ, η) =
∑

x∈η

m(x, γ) +
∑

x∈η

∑

y∈η\x

a−(x− y) +
∑

x∈η

λ(x, γ)

=
∑

ξ⊂η

∫

Γ0

K(γ, ξ, η, ζ)dλ(ζ) ≥

∫

Γ0

K(γ, ξ, η, ζ)dλ(ζ).

This implies that
∫

Γ

∫

Γ0

K(γ, ξ, η, ζ)dλ(ζ)dµ(γ) ≤

∫

Γ

q(γ, η)dµ(γ) <∞,

i.e. condition (S) are satisfied. The assertion is a direct consequence of Theorem 3.4.(b).
�

The reader may wonder why such weak assumptions are sufficient for existence and
convergence of the semigroups. The crucial point here is that we consider an approxima-
tion by bounded linear operators and hence, for each δ > 0, no additional conditions are
needed. In order to pass to the limit δ → 0 additional assumptions are necessary, which
are given below.
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Theorem 4.2. Assume that the conditions of previous theorem are fulfilled. Moreover
suppose that

(i) either m,λ, a− are bounded
(ii) or m,λ, a− are locally bounded and there exists a continuous function ϕ : Rd −→

[1,∞) with ϕ(x) −→ ∞ when |x| → ∞ and a constant c > 0 such that

λ(x)(a+ ∗ ϕ)(x) ≤ cϕ(x) + ϕ(x)m(x), x ∈ Rd.(4.1)

Then T (t) is stochastic and (3.9) holds.

Proof. In the first case set En = {η ∈ Γ0 | |η| ≤ n}, then En ⊂ En+1,
⋃

n≥1En = Γ0 and

q(η) =
∑

x∈η

m(x) +
∑

x∈η

λ(x) +
∑

x∈η

∑

y∈η\x

a−(x− y)

is bounded on any En. Moreover, for V (η) = |η| we obtain infη 6∈En
V (η) ≥ n+ 1 → ∞,

n→ ∞ and hence the assertion follows from Remark 2.4.
For the second case take En = {η ∈ Γ0 | |η| ≤ n, η ⊂ Bn}, where Bn ⊂ R

d is a
ball centered at zero of radius n. Hence due to (4.1) we see that the Lyapunov function
V (η) =

∑
x∈η ϕ(x) satisfies

(LV )(η) ≤ cV (η), η ∈ Γ0.

The assertion follows again by Remark 2.4. �

As a concrete case we can take µ = πz, that is the Poisson measure with intensity
z > 0. Let us take for the interactions

m(x, γ) = m0 +
∑

y∈γ

κ(x− y)

and

λ(x, γ) = λ0 +
∑

y∈γ

ψ(x− y)

with λ0 > m0, 0 ≤ κ, ψ ∈ L1(Rd) and 〈ψ〉 < 〈κ〉. Then

m = m0 + z

∫

Rd

κ(y)dy = m0 + z〈κ〉

and

λ = λ0 + z

∫

Rd

ψ(y)dy = λ0 + 〈ψ〉.

Define β(z) = (λ0 + z〈ψ〉 −m0 − z〈κ〉) and observe that V (η) = 1 + |η| satisfies

(LV )(η) ≤ β(z)|η|.

If a− is, in addition, bounded, then for each 0 ≤ ρ ∈ L1(Γ0, λ) satisfying∫

Γ0

(1 + |η|)ρ(η)dλ(η) <∞,

∫

Γ0

ρ(η)dλ(η) = 1

we see that ρt = T (t)ρ satisfies
∫

Γ0

|η|ρt(η)dλ(η) ≤ eβ(z)t
∫

Γ0

|η|ρ(η)dλ(η), t ≥ 0.

Without the presence of an environment, i.e. z = 0, the number of particles within the
system will grow exponentially in time. But due to the influence of the environment,
such growth may be prevented or even exponential decay may be observed.
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configuration spaces, J. Funct. Anal. 154 (1998), no. 2, 444–500.

2. Sergio Albeverio, Yuri Kondratiev, and Michael Röckner, Analysis and geometry on
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