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REPRESENTATIONS OF THE INFINITE-DIMENSIONAL AFFINE

GROUP

YURI KONDRATIEV

Abstra
t. We introdu
e an in�nite-dimensional a�ne group and 
onstru
t its ir-

redu
ible unitary representation. Our approa
h follows the one used by Vershik,

Gelfand and Graev for the di�eomorphism group, but with modi�
ations made ne
-

essary by the fa
t that the group does not a
t on the phase spa
e. However it is

possible to de�ne its a
tion on some 
lasses of fun
tions.

Ââîäèòüñÿ íåñêií÷åííîâèìiðíà à��iííà ãðóïà i áóäó¹òüñÿ ¨¨ íåçâiäíå óíiòàðíå

ïðåäñòàâëåííÿ. Íàø ïiäõiä íàñëiäó¹ ìåòîä Âåðøèêà-�åëü�àíäà-�ðà¹âà äëÿ ãðóïè

äè�åîìîð�içìiâ, ç íåîáõiäíèìè ìîäè�iêàöiÿìè, ïîâ'ÿçàíèìè ç òèì, ùî ãðóïà íå

äi¹ íà �àçîâîìó ïðîñòîði, àëå ìîæíà âèçíà÷èòè ¨¨ äiþ íà äåÿêèõ êëàñàõ �óíêöié.

1. Introdu
tion

Given a ve
tor spa
e V the a�ne group 
an be des
ribed 
on
retely as the semidire
t

produ
t of V by GL(V ), the general linear group of V :

Aff(V ) = V ⋊GL(V ).

The a
tion of GL(V ) on V is the natural one (linear transformations are automorphisms),

so this de�nes a semidire
t produ
t.

A�ne groups play important role in the geometry and its appli
ations, see, e.g., [4, 12℄.

Several re
ent papers [1, 3, 5, 6, 8, 15℄ are devoted to representations of the real, 
omplex

and p-adi
 a�ne groups and their generalizations, as well as diverse appli
ations, from

wavelets and Toeplitz operators to non-Abelian pseudo-di�erential operators and p-adi


quantum groups.

In the parti
ular 
ase of �eld V = R
d
the group Aff(Rd) de�ned as following.

Consider a fun
tion b : Rd → R
d
whi
h is a step fun
tion on R

d
. Take another matrix

valued fun
tion A : Rd → L(Rd) s.t. A(x) = Id+A0(x), A(x) is invertible, A0 is a matrix

valued step fun
tion on R
d
. Introdu
e an in�nite dimensional a�ne group Aff(Rd)(Rd)

that is the set of all pairs g = (A, b) with 
omponent satisfying assumptions above. De�ne

the group operation

g2g1 = (A2, b2)(A1, b1) = (A1A2, b1 +A1b2).

The unity in this group is e = (Id, 0). For g ∈ Aff(Rd)(Rd) holds g−1 = (A−1,−A−1b). It
is 
lear that for step mappings we use these de�nitions are 
orre
t. Our aim is to 
onstru
t

irredu
ible representations of Aff(Rd)(Rd). As a rule, only spe
ial 
lasses of irredu
ible

representations 
an be 
onstru
ted for in�nite-dimensional groups. For various 
lasses of

su
h groups, spe
ial tools were invented; see [7, 10℄ and referen
es therein.

We will follow an approa
h by Vershik-Gefand -Graev [13℄ proposed in the 
ase of the

group of di�eomorphisms. A dire
t appli
ation of this approa
h meets 
ertain di�
ulties

related with the absen
e of the possibility to de�ne the a
tion of the group Aff(Rd)(Rd)
on a phase spa
e similar to [13℄. A method to over
ome this problem is the main te
hni
al

step in the present paper. We wold like to mention that a similar approa
h was already

2020 Mathemati
s Subje
t Classi�
ation. 22E66; 60B15.
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used in [9℄ for the 
onstru
tion of the representation for p-adi
 in�nie dimensional a�ne

group.

2. Infinite dimensional affine group

In our de�nitions and studies of ve
tor and matrix valued fun
tions on R
d
we will

use as basi
 fun
tional spa
es 
olle
tions of step mappings. It means that ea
h su
h

mapping is a �nite sum of indi
ator fun
tions with measurable bounded supports with


onstant ve
tor/matrix 
oe�
ients. Su
h spa
es of fun
tions on R
d
are rather unusual

in the framework of in�nite dimensional groups but we will try to show that their use is

natural for the study of a�ne groups.

For x ∈ R
d

onsider the se
tion Gx = {g(x) | g ∈ Aff(Rd)(Rd)}. It is an a�ne group

with 
onstant 
oe�
ients. Note that for a ball BN (0) ⊂ R
d
with the radius N 
entered

at zero we have g(x) = (1, 0), x ∈ Bc
N (0).

De�ne the a
tion of g on a point x ∈ R
d
as

gx = g(x)x = A(x)−1(x + b(x)).

Denote the orbit Ox = {gx|g ∈ Gx} ⊂ R
d
. A
tually, as a set Ox = R

d
but elements of

this set are parametrized by g ∈ Gx. For any element y ∈ Ox and h ∈ Gx we 
an de�ne

hy = h(gx) = (hg)x ∈ Ox. It means that we have the group Gx a
tion on the orbit Ox.

It gives

(g1g2)(x)x = g1(x)(g2(x)x)

that 
orresponds to the group multipli
ation

g2g1 = (A2, b2)(A1, b1) = (A1A2, b1 +A1b2)


onsidered in the given point x.

Remark 2.1. The situation we have is quite di�erent w.r.t. the standard group of

motions on a phase spa
e. Namely, we have one �xed point x ∈ R
d
and the se
tion group

Gx asso
iated with this point. Then we have the motion of x under the a
tion of Gx. It

gives the group a
tion on the orbit Ox.

We will use the 
on�guration spa
e Γ(Rd), i.e., the set of all lo
ally �nite subsets of

R
d
.

Ea
h 
on�guration may be identi�ed with the measure

γ(dx) =
∑
x∈γ

δx

whi
h is a positive Radon measure on R
d
: γ ∈ M(Rd). We de�ne the vague topology on

Γ(Rd) as the weakest topology for whi
h all mappings

Γ(Rd) ∋ γ 7→< f, γ >∈ R, f ∈ C0(R
d)

are 
ontinuous. The Borel σ-algebra for this topology denoted B(Γ(Rd)).
For γ ∈ Γ(Rd), γ = {x} ⊂ R

d
de�ne gγ as a motion of the measure γ:

gγ =
∑
xγ

δg(x)x ∈ M(Rd).

Here we have the group a
tion of Aff(Rd)(Rd) produ
ed by individual transformations

of points from the 
on�guration. Again, as above, we move a �xed 
on�guration using

previously de�ned a
tions of Gx on x ∈ γ.

Note that gγ is not more a 
on�guration. More pre
isely, for some BN (0) the set

(gγ)N = gγ ∩ Bc
N (0) is a 
on�guration in Bc

N(0) but the �nite part of gγ may in
lude

multiple points.
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Denote where B0(R
d) the set of bounded measurable fun
tions with bounded support.

For any f ∈ B0(R
d)) we have 
orresponding 
ylinder fun
tion on Γ(Rd):

Lf (γ) =< f, γ >=

∫
Rd

f(x)γ(dx) =
∑
x∈γ

f(x).

Denote Pcyl the set of all 
ylinder polynomials generated by su
h fun
tions. More gener-

ally, 
onsider fun
tions of the form

F (γ) = ψ(< f1, γ >, . . . , < fn, γ >), γ ∈ Γ(Rd), fj ∈ B0(R
d), ψ ∈ Cb(R

n). (2.1)

These fun
tions form the set Fb(Γ(R
d)) of all bounded 
ylinder fun
tions.

For any 
lopen set Λ ∈ Ob(R
d) (also 
alled a �nite volume) denote Γ(Λ) the set of all

(with ne
essity �nite) 
on�gurations in Λ. We have as before the vague topology on this

spa
e and the Borel σ-algebra B(Γ(Λ)) is generated by fun
tions

Γ(Λ) ∋ γ 7→< f, γ >∈ R

for f ∈ B0(Λ). For any Λ ∈ Ob(R
d) and T ∈ B(Γ(Λ)) de�ne a 
ylinder set

C(T ) = {γ ∈ Γ(Rd) | γΛ = γ ∩ Λ ∈ T }.

Su
h sets form a σ-algebra BΛ(Γ(R
d)) of 
ylinder sets for the �nite volume Λ. The set of

bounded fun
tions on Γ(Rd) measurable w.r.t. BΛ(Γ(R
d)) we denote BΛ(Γ(R

d)). That

is a set of 
ylinder fun
tions on Γ(Rd). As a generating family for this set we 
an use the

fun
tions of the form

F (γ) = ψ(< f1, γ >, . . . , < fn, γ >), γ ∈ Γ(Rd), fj ∈ B0(Λ), ψ ∈ Cb(R
n).

For so-
alled one-parti
le fun
tions f : Rd → R, f ∈ B0(R
d) 
onsider

(gf)(x) = f(g(x)x), x ∈ R
d.

Then gf ∈ B0(R
d). Thus, we have the group a
tion

B0(R
d) ∋ f 7→ gf ∈ B0(R

d), g ∈ Aff(Rd)

of the in�nite dimensional group Aff(Rd) in the spa
e of fun
tions B0(R
d).

Note that due to our de�nition, we have

< f, gγ >=< gf, γ >

and it is reasonable to de�ne for 
ylinder fun
tions (2.1) the a
tion of the group Aff(Rd)
as

(VgF )(γ) = ψ(< gf1, γ >, . . . , < gfn, γ > .

Obviously Vg : Fb(Γ(R
d)) → Fb(Γ(R

d)).
Denote m(dx) the Lebesgue measure on R

d
. The dual transformation to one-parti
le

motion is de�ned via the following relation∫
Rd

f(g(x)x)m(dx) =

∫
Rd

f(x)g∗m(dx)

if exists su
h measure g∗m on R
d
.

Lemma 2.1. For ea
h g ∈ Aff(Rd)

g∗m(dx) = ρg(x)m(dx)

where ρg = 1Bc
R
(0) + r0g , r0g ∈ D(Rd,R+). Here as above

Bc
R(0) = {x ∈ R

d | |x|p ≥ R}.
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Proof. We have following representations for 
oe�
ients of g(x):

b(x) =
n∑

k=1

bk1Bk
(x),

a(x) =

n∑
k=1

ak1Bk
(x) + 1Bc

R
(0)(x)

where Bk are 
ertain balls in R
d
. Then

∫
Rd

f(g(x)x)m(dx) =

n∑
k=1

∫
Bk

f(
x+ bk

ak
)m(dx) +

∫
Bc

R
(0)

f(x)m(dx) =

n∑
k=1

∫
Ck

f(y)|ak|pm(dy) +

∫
Bc

R
(0)

f(y)m(dy),

where

Ck = a−1
k (Bk + bk).

Therefore,

g∗m = (

n∑
k=1

|ak|p1Ck
+ 1Bc

R
(0))m.

Note that informally we 
an write

(g∗m)(dx) = dm(g−1x).

�

Note that by the duality we have the group a
tion on the Lebesgue measure. Namely,

for f ∈ B0(R
d) and g1, g2 ∈ Aff(Rd)∫

Rd

(g2g1)f(x)m(dx) =

∫
Rd

g1f(x)(g
∗
2m)(dx) =

∫
Rd

f(x)(g∗1g
∗
2m)(dx) =

∫
Rd

f(x)((g2g1)
∗m)(dx).

In parti
ular

(g−1)∗(g∗m) = m.

Lemma 2.2. Let F ∈ BΛ(Γ(R
d)) and g ∈ Aff(Rd) has the form g(x) = (1, h1B(x)) with


ertain h ∈ R
d
and B ∈ Ob(R

d) s.t. Λ ⊂ B. Then

VgF ∈ BΛ−h(Γ(R
d)).

Proof. Due to the formula for the a
tion VgF we need to analyze the support of fun
tions

fj(x + h1B(x)) for supp f⊂Λ. If x ∈ Bc
then x ∈ Λc

and therefore fj(x + h1B(x)) =
fj(x) = 0. For x ∈ B we have fj(x+h) and only for x+h ∈ Λ this value may be nonzero,

i.e., supp gfj ⊂ Λ− h.

�

Denote πm the Poisson measure on Γ(Rd) with the intensity measure m.

Lemma 2.3. For all F ∈ Pcyl or F ∈ Fb(Γ(R
d)) and g ∈ Aff(Rd) holds∫

Γ(Rd)

VgFdπm =

∫
Γ(Rd)

Fdπg∗m.
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Proof. It is enough to show this equality for exponential fun
tions

F (γ) = e<f,γ>, f ∈ D(Rd).

We have ∫
Γ(Rd)

VgFdπm =

∫
Γ(Rd)

e<gf,γ>dπm(γ) =

exp[

∫
Rd

(egf(x) − 1)dm(x)] = exp[

∫
Rd

(ef(x) − 1)d(g∗m)(x) =

∫
Γ(Rd)

Fdπg∗m.

�

Remark 2.2. For all fun
tions F,G ∈ F(Γ(Rd)) a similar 
al
ulation shows∫
Γ(Rd)

VgF Gdπm =

∫
Γ(Rd)

F Vg−1Gdπg∗m.

Let πm be the Poisson measure on Γ(Rd) with the intensity measure m. For any

Λ ∈ Ob(R
d) 
onsider the distribution πΛ

m of πm in Γ(Λ) 
orresponding the proje
tion

γ → γΛ. It is again a Poisson measure πmΛ
in Γ(Λ) with the intensity mΛ whi
h is the

restri
tion of m on Λ. In�nite divisibility of πm gives for Fj ∈ BΛj
(Γ(Rd)), j = 1, 2 with

Λ1 ∩ Λ2 = ∅∫
Γ(Rd)

F1(γ)F2(γ)dπm(γ) =

∫
Γ(Rd)

F1(γ)dπm(γ)

∫
Γ(Rd)

F2(γ)dπm(γ) =

∫
Γ(Λ1)

F1dπ
Λ1

m

∫
Γ(Λ2)

F2dπ
Λ2

m .

Lemma 2.4. For any F ∈ BΛ(Γ(R
d) and g = (1, h1B) ∈ Aff(Rd) with Λ ∩ (B + h) = ∅

holds ∫
Γ(Rd)

(VgF )(γ)dπm(γ) =

∫
Γ(Rd)

F (γ)dπm(γ).

Proof. Due to our 
al
ulations above we have∫
Γ(Rd)

(VgF )(γ)dπm(γ) =

∫
Γ(Rd)

F (γ)dπg∗m(γ) =

∫
Γ(Λ)

F (η)dπΛ
g∗m(η) =

∫
Γ(Λ)

F (η)dπ(g∗m)Λ(η).

But we have shown

(g∗m)(dx) = (1 + 1B+h(x))m(dx) = m(dx)

for x ∈ Λ, i.e., (g∗m)Λ = m.

�

Lemma 2.5. For any F1, F2 ∈ Fb(Γ(R
d)) there exists g ∈ Aff(Rd) su
h that∫

Γ(Rd)

F1 VgF2dπm =

∫
Γ(Rd)

F1dπm

∫
Γ(Rd)

F2dπm.
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Proof. By the de�nition, Fj ∈ BΛj
(Γ(Rd)), j = 1, 2 for some Λ1,Λ2 ∈ O(Rd).

Let us take g = (1, h1B) with the following assumptions:

Λ2 ⊂ B, Λ1 ∩ (Λ2 − h) = ∅, Λ2 ∩ (B + h) = ∅.

Then a

ordingly to previous lemmas∫
Γ(Rd)

F1VgF2dπm =

∫
Γ(Rd)

F1dπm

∫
Γ(Rd)

F2dπm.

�

3. Aff(Rd) and Poisson measures

For F ∈ Pcyl or F ∈ Fb(Γ(R
d)), we 
onsider the motion of F by g ∈ Aff(Rd) given

by the operator Vg. Operators Vg have the group property de�ned point-wisely: for any

γ ∈ Γ(Rd)

(Vh(VgF ))(γ) = (VhgF )(γ).

This equality is the 
onsequen
e of our de�nition of the group a
tion of Aff(Rd) on


ylinder fun
tions.

As above, 
onsider πm, the Poisson measure on Γ(Rd) with the intensity measure m.

For the transformation Vg the dual obje
t is de�ned as the measure V ∗
g πm on Γ(Rd) given

by the relation ∫
Γ(Rd)

(VgF )(γ)dπm(γ) =

∫
Γ(Rd)

F (γ)d(V ∗
g πm)(γ),

where V ∗
g πm = πg∗m, see Lemma 2.3.

Corollary 3.1. For any g ∈ Aff(Rd) the Poisson measure V ∗
g πm is absolutely 
ontinuous

w.r.t. πm with the Radon-Nykodim derivative

R(g, γ) =
dπg∗m(γ)

dπm(γ)
∈ L1(πm).

.

Proof. Note that density ρg = 1Bc
R
(0) + r0g , r0g ∈ D(Rd,R+) of g

∗m w.r.t. m may be

equal zero on some part of R
d
and, therefore, the equivalen
e of of 
onsidered Poisson

measures is absent. Due to [11℄, the Radon-Nykodim derivative

R(g, γ) =
dπg∗m(γ)

dπm(γ)

exists if ∫
Rd

|ρg(x)− 1|m(dx) =

∫
BR(0)

|1− r0g(x)|m(dx) <∞.

�

Remark 3.1. As in the proof of Proposition 2.2 from [2℄ we have an expli
it formula

for R(g, γ):

R(g, γ) =
∏
x∈γ

ρg(x) exp(

∫
Rd

(1− ρg(x))m(dx).

The point-wise existen
e of this expression is obvious.

This fa
t gives us the possibility to apply the Vershik-Gelfand-Graev approa
h realized

by these authors for the 
ase of di�eomorphism group.

Namely, for F ∈ Pcyl or F ∈ Pcyl(Γ(R
d) and g ∈ Aff(Rd) introdu
e operators

(UgF )(γ) = (R(g−1, γ))1/2(VgF )(γ).
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Theorem 3.1. Operators Ug, g ∈ Aff(Rd) are unitary in L2(Γ(Rd), πm) and give an

irredu
ible representation of Aff(Rd).

Proof. Let us 
he
k the isometry property of these operators. We have using Lemmas

2.3, 2.1 ∫
Γ(Rd)

|Ug|
2dπm =

∫
Γ(Rd)

|VgF |
2(γ)dπ(g−1)∗m(γ) =

∫
Γ(Rd)

|F (γ)|2dπ(gg−1)∗m(γ) =

∫
Γ(Rd)

|F (γ)|2dπm(γ).

From Lemma 2.3 follows that U∗
g = Ug−1 .

We need only to 
he
k irredu
ibility that shall follow from the ergodi
ity of Poisson

measures [13℄. But to this end we need �rst of all to de�ne the a
tion of the group

Aff(Rd) on sets from B(Γ(Rd). As we pointed out above, we 
an not de�ne this a
tion

point-wisely. But we 
an de�ne the a
tion of operators Vg on the indi
ators 1A(γ) for
A ∈ B(Γ(Q)). Namely, for given A we take a sequen
e of 
ylinder sets An, n ∈ N su
h

that

πm(A∆An) → 0, n→ ∞.

Then

Ug1An
= Vg1An

(R(g−1, ·))1/2 → G(R(g−1, ·))1/2 ∈ L2(πm), n→ ∞

in L2(πm). Ea
h Vg1An
is an indi
ator of a 
ylinder set and

Vg1An
→ G πm − a.s., n→ ∞.

Therefore, G = 1 or G = 0 πm-a.s. We denote this fun
tion Vg1A.
For the proof of the ergodi
ity of the measure πm w.r.t. Aff(Rd) we need to show the

following fa
t: for any A ∈ B(Γ(Rd)) su
h that ∀g ∈ Aff(Rd) Vg1A = 1A πm − a.s. holds

πm(A) = 0 or πm(A) = 1.
Fist of all, we will show that for any pair of sets A1, A2 ∈ B(Γ(Q)) with πm(A1) >

0, πm(A2) > 0 there exists g ∈ Aff(Rd) su
h that∫
Γ(Rd)

1A1
Vg1A2

dπm ≥
1

2
πm(A1)πm(A2). (3.2)

Be
ause any Borel set may be approximated by 
ylinder sets, it is enough to show this

fa
t for 
ylinder sets. But for su
h sets due to Lemma 2.5 we 
an 
hoose g ∈ Aff(Rd)
su
h that ∫

Γ(Rd)

1A1
Vg1A2

dπm = πm(A1)πm(A2).

Then using an approximation we will have (3.2).

To �nish the proof of the ergodi
ity, we 
onsider any A ∈ B(Γ(Rd) su
h that

∀g ∈ Aff(Rd) Vg1A = 1A πm − a.s., πm(A) > 0.

We will show that then πm(A) = 1. Assume πm(Γ \A) > 0. Due to the statement above,

there exists g ∈ Aff(Rd) su
h that∫
Γ(Rd)

1Γ\AVg1A > 0.

But due to the invarian
e of 1A it means∫
Γ(Rd)

1Γ\A1Adπm > 0

that is impossible. �
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