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ABSTRACT. A sequence of the real numbers s = {s;}{_, is associated with the some
indefinite Stieltjes moment problem and generalized Jacobi matrices. The relation
between the a—regular indefinite Stieltjes moment problem and shifted Darboux
transformation of the generalized Jacobi matrix is studied. The new formulas for
the Stieltjes polynomials with the shift are found and one are used to obtain the
description of the solutions of the a—regular indefinite Stieltjes moment problem.

TTocnigoBHICTE AifiCHUX 4YHCesl S = {si}fzo NoB’A3aHa 3 JIEAKOIO 33a/a4ei0 PO
HeBusHavyeHuit MoMmeHT CTiTheca Ta y3arajbHeHUMH MaTpunaMmu Jkobi. lociimzxkeno
3B’SI30K MiXK (v—PEryJISIpHOIO IIPOo0JIeMOI0 HeBu3HadeHoro momeHnty Crinrbeca Ta
3mimeHuM neperBopeHHsaM JlapOy ysarambHeHol marpunmi fkobi. 3HaiizeHo HOBI
dopmynu gyst noninomis CrisiTbeca 31 3CyBOM Ta BUKOPHCTAHO I OTPUMAHHS OIUCY
PO3B’sI3KiB (v—peryssipHol HeBU3Ha4YeHOl mpobsiemu momenTy CTiTheca.

1. INTRODUCTION.

A classical Stieltjes moment problem was studied in [26]. Given a sequence of the real
numbers s = {s;}52, find a positive measure o with support on R such that

siz/ t'do(t), i€Z, =Nu{o}. (1.1)
Ry

The problem (1.1) with a finite sequence s = {s;}_, is called a truncated Stieltjes moment
problem, otherwise it is called a full Stieltjes moment problem.
The Stieltjes transform of a measure o,

f(2) = / o) o, (1.2)

b
N t—=z

belongs to the Nevanlinna class N, i.e., f € N, if f holomorphic on C\R, Imf(z) > 0,
and f(Z) = f(z) for all z € C;..
A function f belongs to the Stieltjes class S, if f € N and it admits a holomorphic

and nonnegative continuation to R_. By M.G. Krein’s criterion [17],
f€ES<— feN and =zfeN. (1.3)

By the Hamburger—Nevanlinna theorem (see [1]), the truncated Stieltjes moment
problem can be reformulated in terms of the transform (1.2) as an interpolation problem
at 0o, namely, find f € S such that the following asymptotic expansion holds:

S50 s1 Son 1 —~
flzy=-22_2L ... ST 10 <22"+1> ) 25500. (1.4)
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The notation z—oo means that z — oo nontangentially, that is, inside the sector
e < argz < m — ¢ for some € > 0.

Let us recall definitions of a generalized Nevanlinna class N, and a generalized Stieltjes
class NX. A function f, meromorphic on C\R with the set of holomorphy b, is said
to belong to the generalized Nevanlinna class N, (k € N), if for every set z; € C4 N by

(j =1,...,n) the form
3o 10 )515

,j=1
has at most « and for some choice of z; (z =1,...,n) it has exactly k negative squares.
For f € Ny let us write k_(f) = k. In particular, if k = 0, then the class Ny coincides
with the class N of Nevanlinna functions. A function f € N is said to belong to the
class N (see [18, 19]) if zf € N and to the class N¥ (k € N) if zf € N¥ (see [3, 4, 12]).

1

In particular, if k = 0, then N? := N*. We have f € N-* if f € N, and ~f € Ny, (see
z

[11]).

Problem MPﬁ(S,K). Given ¢, k, k € Z,, and a sequence of real numbers s = {si}fzo,
describe the set M¥ (s) of functions f € N¥ that have the following asymptotic expansion:

S0 S1 S¢ 1 -
fa)=-=2-2 —... — o, +0 (z“‘l> ,  zZ=voo. (1.5)

If {=2n—2 and n € N, then MP];(S,K) is called an odd moment problem, otherwise
MP* (s, ¢) is called an even moment problem. If £ = oo, then MP¥ (s, £) is called a full
moment problem.

Indefinite moment problems in the classes N, were studied in [3, 20]. Indefinite moment
problems in the classes N} and N* were studied in [20, 21] and [5, 6, 7, 8, 9, 14, 16],
respectively.

In this paper, we study the a—regular indefinite moment problem in the generalized
Stieltjes class and its connection with the Darboux transformation. It is based on the
results of [15, 16]. New formulas for the Stieltjes polynomials are found in the Section
3, and then we obtain a description of a solution of the a—regular indefinite moment
problem MP¥ (s, £). In the sections 4-5, we investigate the Darboux transformation of
the Jacobi matrices associated with the MP (s, £).

2. PRELIMINARIES

In the general case (the indefinite case), the moment sequence s = {s;}$2, is associated
with a linear functional & that is defined on the linear space

P =span{z’ :j €L} (2.6)
by the equality
&(27) = s, JjEZy. (2.7)
Moreover, the sequence s = {s;}¢_ is associated with a set of normal indices N (s) =
{nj}évzl defined by

N(s)={nj: Dy, #0,j =1,2,...,N}, Dy, :=det(sisx) 0. (2.8)

Denote by v_(S,,) the number of negative eigenvalues of the Hankel matrix S,,. Let H
be the set of finite or infinite real sequences s = {s;}_,.
A sequence s = {s;}f_, belongs to the class H, ¢ if

v_(Sp) =k (n=1[¢/2]+1). (2.9)
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Moreover, a sequence s = {s; }¢_, belongs to the class 'H’;,é if s = {s;}{_y € Hp and
{si1 128 € Hppn, ie., (2.9) and following condition holds:
v (SH=k (n=1[(+1)/2)). (2.10)

Using a sequence s (see |1, 2]) we can construct the polynomials of the first and the
second kind defined by

S0 S1 PN S’I’LJ'
1 Py (2) — Py (1)
P, (2) = —det SO (2)=6, (T 911
@ =gl L Qe (B 2.11)
1 z 2N

Furthermore, the polynomials P, (z) of the first kind and @,,(z) of the second kind
are solutions of the following difference system ([25])

biymf1 (Z) - ai(z)ym (Z) + Ynitr (Z) =0, (2'12)

It is associated with a sequence of the atoms (a;,b;), i € Z4 and by := s,,, 1, subject to
the initial conditions

P,_,(2)=0, Pp,(2) =1, Qn_,(2) =-1, Qn,(2) =0. (2.13)
A generalized Liouville-Ostrogradsky formula holds for P,, and @, (see [7, (2.9)]),
Qn,(2)Pa,_(2) = Qn,_(2)P,(2) = bi_1, i€Nandbi_1 =boby..bi_1.  (2.14)

The sequence s, the system (2.12)-(2.13), the polynomials P, and Q,; and the atoms
(a;, b;) are associated with the following P — fraction (see [13, 23])

b
- 0 (2.15)
b1
ao(z) - by
ay(z) —
as(z) — -
and a monic generalized Jacobi matrix (see [2]),
Co Do
B1 &, D
J= . (2.16)

%2 Q:CLQ

where the diagonal entries are companion matrices associated with the real monic polyno-
mials a; (see [22]),

0 1 0 0
0 0 1
Co=| 0 are (; x {; matrices, {; =nj11—n;, (2.17)
0 0 0 1
T R}

D, and B, are £; X £;41 and ;11 X ¢; matrices, respectively, defined by

o0 --- 0 0 o ... 0

D= ¢ o | andBa=[ © 7 0 T b €R\{0},5 €24, (2.18)
00 --- 0 0 0 --- 0
10 0 bjy1 0 -+ 0
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The shortened generalized Jacobi matrix J; ;) is defined by

Jjig) = Birr it ,i<jandi,j€ Z,. (2.19)
Qj—l

%j Q:Pj

The following connection between the polynomials of the first and the second kind and

the shortened generalized Jacobi matrices can be found in [2],
Py, (2) = det(z = Jjo,j—11) and  Qn,(2) = bodet(z — Jp1 1)) (2.20)
As was shown in [2, Proposition 6.1], [10], the m-function can be found as

det(z —Jpj-1) = @n,(2)

migi—11(2) = — — = 2.21
0,j-1](2) Odet(Z—d[o,j_l]) P, (2) ( )
and admits the following asymptotic expansion:
S50 51 Son;—2 1 —
myo,j—1)(2) = —— - z2"j'_1 +o <32"1_1> , Z900. (2.22)

2.1. Classification of the indefinite Stieltjes moment problems. We set D, :=
n—

det(si+j+1)i’j:10. A sequence s is called a regular sequence (see [7]), if Dﬁ[j = 0 for all
n; € N(s). In this case, the indefinite Stieltjes moment problem MP¥ (s, ¢) is called
a regular indefinite Stieltjes moment problem. It was studied in [7]. Without loss of
generality, the solutions of the MP’Z(S, 2n; — 2) can be written as
1 1] 1] 1

= Th T T e T Re)

where the atoms (m;,l;) are defined by special formulas see [7], I; are constants and the
parameter 7 satisfies the following conditions:

1 —~
T € Nﬁ:ﬁx and ) =o(z), z500. (2.23)

In the case where the sequence s is not regular, the indefinite Stieltjes moment problem
MP¥ (s, £) was studied in [14]. In this case, MP¥ (s, £) is called a general indefinite Stieltjes
moment problem. For example, the solutions of the odd moment problem MPﬁ(s, 2n;—2)
take the following form:
1] n 1] P 1] n 1]

(=) | —=m;(z)  I7(2)’
where the atoms (m;,l;) are defined by special formulas, see [14] and I; are polynomials,
the parameter 7 satisfies conditions similar to (2.23).

Let us recall definitions of an a—regular sequences.

flz) =

1 C)

Definition 2.1. ([16]) We say that a sequence s = {s;}¢_, belongs to the a—regular
class Hi’?ﬂey , if s € HE , and all polynomials of the first kind P,; associated with the
sequence s satisfy the following condition:

P, (a) #0 for all nj € N(s). (2.24)

The moment problem MPﬁ(s,ﬁ) associated with an a—regular sequences is called
a—regular indefinite Stieltjes moment problem.
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In this case, the solutions of the a—regular moment problem MPQ(S, 2n; —2) are

f(z) = i , (2.25)
1

b
7(2)

where the atoms (mg, %) are defined by (3.29), I are constants, the parameter 7 satisfies

conditions analogous to (2.23).

—(z —a)m(2) +

3. STIELTJES POLYNOMIALS

Definition 3.1. ([16]) Let s € ’Hﬁ:?_reg. Define polynomials Pj"(z,) and Q] (z,a)
corresponding to the sequence s as follows:

Pf(z,0) =0, P)f(z, a) =1, QT (z,0) =1, Qf(z,a)=0,
_ —1 Pp(z) Py (2) za P, (2)

B =g ) Al e TR Gy )
_ 1 Qm (2) Qnii(2) _ Qn(2)

Gl = ) B GO0 = TR ey

Pjr (z,a) and Qf(z, «) are called the Stieltjes polynomials of the first and second kind
with the shift a, respectively.

As was shown in [16, Lemma 5.4], the Stieltjes polynomials are solutions of the following
system, and S—fraction (2.25) is also associated with the following system of difference
equations:

{ Yoj — Y22 = §Y25-1, (3.27)
Y241 — Y2j-1 = —(2 — a)m$ 1 (2)y2y,
where the atoms of the S—fraction are (mg,[{) and can be calculated as
1 1 1
df=—, f=—7—7—, df=———5—,
b ' dfao(c) bia(I7)%d}
o o (3.28)
apy _ (@ic1(2) —aia(a))d? o, l;
mi(z) = ;== ‘
zZ—« 1412 d%a;—1 ()

Moreover, it follows from (3.28) that there are relations between the atoms (mg,[¢) and
(ai, b;),

b= and ao(z)C;JL((Za)m?(z)l)’

1 1

(3.29)
bj_1 = ! and a;_1(z) = ! (z —a)m$(2) L + !
-1 = —a aga 2 —1(z) =3 | (—a)mj(z) = | a—+ 3 | |-
’ djfldj (ljfl)z ’ dj ! ljfl lj

Lemma 3.2. Let Pj‘|r (z,a) and Qj(z,oz) be the Stieltjes polynomials associated with a

sequence s € ’Hﬁ:?ﬂeg. Then
P2—~;(Z7Q)Q3—ifl(zaa) _Q;i(z7a)P2—~;—l(Z7a) = 17 (330)
Py (a,a) =0 and P;;fQ(oz,oz) =1; (3.31)

Q3 1(a,0) =1, €N, (3.32)
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Proof. Let us prove (3.30). By Definition 3.26, we obtain
P;;(Za Q)Q;71(27 O() - Q;;(Z, a)P;;—l(za Oé)
= (P ()@, (2) P, (@) = Quiy ()P (@)

= Qu () (Pay(2)Par, (@) = Pa (2)Pas(@))) /(i1 Pas(@)
_ Qm (Z)P'”ql(z%_ Pni (Z)mel(z) _ {by (2.14)} - 1.
i1
Formula (3.31) immediately follows from (3.26). Calculating Q3, ,(a, @), we get

n; (@) Py, () = Py, ()@, ,(c
0 (o) = Lo PG )
i—1

This completes the proof. O

Lemma 3.3. Let a sequence of polynomials {yn,(2)}52, satisfy the three-term recurrence
relation (2.12) and let deg (yn,) = ni—ni—1 > 1. Then the generalized Christoffel-Darboux
formula holds,

N i

Ynpn i1 (Z)ynN (‘T) — Ynn (Z)y7lN+1 (.CE) = Z E (Ch(Z) - al(x))ym (Z)ynz (gj) (333)
i=0 “N—i

Proof. Let us find a recurrence formula. Let j € Z, then
Ynjir (2)Yn; () = Yn; (2)Yn; 40 (2) = {by (2.12)}
= (a;(2)yn; (2) = bjyn,_, (2))yn, (2) = (a;(@)yn, (x) = bjyn,_, (2))yn, (2) (3.34)
= (a;(2) = a;(€))yn; (2)yn; () + 05 (Yn; (2)Yn; 1 (€) = Yn; (€)Yn; -, (2))-
Due to Fl;j = bgb1 ...b;_1 and applying the recurrence formula (3.34) N—times to

Ynni1 (Z)ymv ({,C) — Ynn (z)ynN+l ((,C)7

the generalized Christoffel-Darboux formula (3.33) is obtained. This completes the
proof. O

Remark 3.4. If nj;1 —n; =1 for all j € Z,. Then (3.33) is the classical Christoffel-
Darboux formula, i.e.,

Ynni1 (Z)ynN (x) —ynN(z)ynNH (m) _ N ZfN . N
oy §~Nﬂ_ym< Yy, () (3.35)

Proof. Due to nj41 —n; =1 for all j € Z,, we have a;(z) — a;(z) = z — x and then

N o~
bn
Ynni1 (Z)ynN (LC) — Ynn (z)ynN+1 (ir) = Z ’5 (Z - $)y2(2)yz(l’)
i=0 YN—i
. Consequently, we obtain (3.35). This completes the proof. O

Theorem 3.5. Let {P,,}52, and {Qn,;}52, be sequences of the polynomials of the first
and the second kind, respectively, associated with the three-term recurrence relation (2.12)
and let o € R be such that P, (a) # 0 for all j € Z,. Then the generalized Christoffel-
Darbour formula for Py, takes the following form:

N 7T a
PTLN+1 (2)Ppy (@) = Py (Z)PnN+1 (@) _ by mi+1(z)

«
di+1

= P, (2) P, (), (3.36)
Z— A " "

where the polynomials m$ and the numbers d¥ are defined by (3.28).
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Furthermore, the polynomials of the second kind, Q,;, satisfy the following:

N 7T @
Qe (P2 (0) = Qs (@) 5 W 180, 1, (o), (3
i=0 IN—i i+1

Proof. Since the polynomials P, satisfy (2.12) and it follows from (3.33) that

PnN+1(Z)PnN(a)_PnN(Z)PnN+1(a) — 1 - EN a;\z2) —a;lx P z P «
! a2 g )~ () P ()P

N
~ (y 329) = 32 T ) (o),

i=0 YN—1 41

Let us find a recurrence formula for Q,,; similar to (3.34),

an+1(z)P ( ) Qng( ) 7L]+1( ): {by (212)}
= (aj(2)@n,; (2) = bjQn; ., (2)) P (@) = (aj(@) Po; (@) = b Py, ()@, (2)

= (a;(2) = a;(a))Qun, (2) P (@) + bj(Qn; (2) Po;_, (@) = Poy(@)Qn;_,(2)).
(3.38)

Applying (3.38) N—times, we get

N
Qn]\“d (Z)PTLN( ) QnN( ) nN+1 ) = z i o Z ~bN (az(’z) - al(a))P’ﬂ'L (Z)P'm (a)

z—« by
N
bN mz ( )
- e d+1 an( ) TM(a)
i=0 bn—; i+1
So, (3.36) and (3.37) are proved. This completes the proof. O

Hence, we can rewrite representation of the Stieltjes polynomilas in terms of the
Christoffel-Darboux formula.

Corollary 3.6. Let P/ (z,a) and Q] (z,a) be Stieltjes polynomials of the first and the
second kind with a shift «, respectively. Then the Stieltjes polynomials of the first and the
second kind can be found as

P;—Nfl(z’a) = 7(’2 - a) A“ipnl (Z)Pnl (a)v (339)

Qyr(m) = () Y =", ()P, (o) (3.40)

Theorem 3.7. Lets = {s;};"3 2 ¢ Hk ¢, and let N(s) = {n;}}_,. Let « € R
be such that P,;(ca) # 0 for all j = 1,N, and let the generalized Stieltjes polynomials
PjJr(z,a) and Q;r(z,a) be defined by (3.26). Then we have the following:

(1) f e ME(s,2ny —2) if and only if f admits the representation

_ =t 'L+1(Z) _
=P (0) 5 250, ()P, (@)7(2) — Qv 2
f(z) = — . (341
(=P @) S #P (5)Pan (@)7(2) + Pay 1 (2)

where the parameter T satisfies the following conditions:

1 —~
T € NI and @ =o0(z), 2500, (3.42)
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the indices kK and kN are calculated by the following formulas:

HN—H—ZK z—a) J) and kNZk—EN,

(3.43)
N N-1
=Zm,(m + ZH z—a)l
j=1 j=1
(2) f e ME(s,2ny — 1) if and only if f admits the representation
N—1
(2= )Py, (0) T 775200, ()P, (@)7(2) — Quy (2)
i=0 —idih
f(z) = e E—— : (3.44)
m; z
(0= 2Py, (@) X 258 P ()P, (@)7(2) + Pay (2)
i=0 "N-17i%i4
where the parameter T satisfies the following conditions:
+
TE N,fﬁ and 7(2) =0(1), 2700, (3.45)
the indices Ky and kN are calculated by the following formulas:
RN—K—ZE (z —a)m ) and k},zk—ﬁfv,
B (3.46)

N N
= Z Ko (m) + Z Ko ((z = a)l2).

Lemma 3.8. Let s € Hka "9 and let the S—fraction (2.25) be associated with the
sequence s. Then we have the following:

(1) the lengths I can be calculated by

= Q. (v,a) —QF_o(a,a) and 1§ = —=2" + == )) (3.47)

(2) For all N € N the following formulas hold:

3 Quy (@)
Zlo‘ Qiy(a,a) and Zl?:fPL' (3.48)
i=1 "

N
> _mi(@) = =Py (). (3.49)

Proof. Due to (3.27), we obtain
Q;’;-(Oé, a) — Q;if2(a’ @) = lqu;ifl(a’ ).
By Lemma 3.2 (see (3.32)) and by (3.26), we get

= Q;(a,a) - Q;ifQ(O[’ a) = -

Consequently,

o in ) Qno (Oé) . QnN (Oé) QnN—l (Oé) QnN (Oé) _
Zl (@) T P (@) Pun(@) " Puy (@) Payla)

7) we obtain

v (3.2
Py (z,0) = Py (2,0) = —(2 — a)(m$y, (2) P (2, @) — m@yy (2) Pyl (2, @0).
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Hence

o P;g/_l(,z7 a) — P;i;_l(z, Q) / /

mi+1(’z) = P;,;(Z, Oé) |Z:0¢ = Z—l(av a) - P;;+1(O[, a)

and we get

N

> mi (@) =P (@,0) = P (0, 0) -+ Py _g(a,0)— Py (o)

i=1

= _P;N—l(av Oé).

This completes the proof. 0

Lemma 3.9. Lets € Hﬁj:?—reg, and let s be associated with the S—fraction (2.25). Then
the atoms (mg,1$) satisfy the following:

(1) the leading coefficient of the polynomial m$ is calculated as

P’I’%'71 (a) re
d? = ,;;7, where bi,1 = b0b1 e bz?l; (350)
i—1
(2) the numbers (lengths) I can be found by
[
1o = L (3.51)

v _Pni—l (a)Pnz (0)7
(3) d¢ and I are connected by the following:

P, (@)
o .52
d'l K3 Pnl (a) I (3 5 )
(4) d$, and [ are connected by the following:
P,,(a) )
a1y = ———— llieN. 3.53
1+1% bipniil(a)ﬂ fOT a 2 6 ( )
Proof. By (2.12), (2.13), and (3.29), we obtain
1 1
Pn = , & — —, o = —,
1(2) ao(Z) 1 bo i+1 (lzoz)2d;1bz
(3.54)
a0(0) =~ o, aifa) =~ 2 :
0 = T Saia i ~ T30 ja ga ja -
dyl; A I di I,
Hence, by induction, we get
Base case: for i =1,
1 P2
P = &= by = D@
bo bo
1 1 bo bo

——— =P, ()= =— =- = - .
drg = P S = e ) T T Bn(@) © Pag(@) P ()

Induction step: let (3.50) and (3.51) hold for ¢ = N — 1. Due to (3.51) and (3.54), we
obtain

&5 — 1 _ 1 _ P@,z(a)PﬁN,l(a)bNﬁ
(I _1)%dy_1bv—1  (I§_1)%dy_1bnv— b3 _o P2, (a)by_1
Panl(a)

bn—1
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Substituting dy into (2.12) we get [x as
belpanz(a) - aNfl(a)PﬂNfl(a) + Poy (a) =0,

1 1
bN_lpnN_2<a>+( i +M) Pa 1 (0) + Pay (@) =0,
leNfl dNZN

ZN 1PnN 2(0‘)PTLN—1(Q)

e,

bn—1Pny_,(a)— —~ Py (@) 55— Py 1 (@) + Py () = 0.
1 N-2 P,,.QLN 1( )bN_2 N PzN 1( )lN N N
Consequently, we obtain
bN—l ’6an1
—— P, (a)+ P, (a)=0= 1% = — .
P2 (g (O F Bl =0= 15 = = @)

So, (3.50) and (3.51) are proved. Let us show the validity of the formulas (3.52) and
(3.53):

407 — _P2y(e) bi_1 _ Pia(e)
v b1 Pic1(a)Pi(e) Pi(a) ’
. ~i Pni—l(a)Pni (Ot) blpﬂq 1(04).
This completes the proof. O

Corollary 3.10. Lets € ”Hk 0T and let s be associated with the S—fraction (2.25).
Then polynomials of the ﬁrst kmd, Py, for a are calculated by

Poy(0) = (1Y I zars- (3.55)

i=1

Moreover, the following alternative formula holds:
Do
Pojle) = (=17 g [T d2t? (3.56)
i=1

4. SHIFTED DARBOUX TRANSFORMATION OF THE MONIC JACOBI MATRICES

Now we consider the Darboux transformation with a shift a of a monic Jacobi matrix
associated a sequence s = {s;}3°, € H¥, such that n;;1 —n; =1 for all j € Z,. In this
case, the monic Jacobi matrix J takes the following form:

ap 1

J = b1 ay RN (457)

The three-term difference relation (2.12) for the matrix J can be rewritten as

1 1
2Yo = a; —Y-1+ (a+dll“>y0+y1’

1 1 (1 1 (4.58)
W gt (a TG <lj la)) S
subject to the initial conditions
P_1(2)=0, Py(z)=1, and Q_1(2) =-1, Qo(z)=0. (4.59)

By [15] we find £U— factorization with the shift o of the monic Jacobi matrix J.
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Propositlon 4.1. Let J be a monic Jacobi matriz associated with a sequence s =

{si}2, € ’Hk 4T and let N(s) = {n;}32, be a set of normal indices of the sequence s,
where nj = j and ng = 0. Let P; be polynommls of the first kind corresponding to the
matrix J, and let o be some real number such that Pj(c) # 0 for all j € Z. Then the
monic Jacobi matriz J admits the following £81 — factorization with the shift a:

J =8+ al, (4.60)

where the factorization matrices £ and U are defined by

1 —Up 1
o1 —uq 1
£= L 1 and U= Ty | (4.61)
the entries of the matrices £ and 4 are calculated by
1 1
[ = —— and uj 1 =———  forall jeN. (4.62)
d]+1lj dj lj
Furthermore,
j—1
Pi(a) = H u;, forallj€N. (4.63)
i=0

Proof. By [15, Lemma 3.2|, we get £ and 4 matrices, which are defined by (4.62). In this
case, the matrix J takes the following form:

1
T
N +1(1+1) ]
J=8+a=|drd3(f)? dy \1§ 13 . (4.64)
! I
g ds(ig) CTa \s g

Moreover, by [15, Lemma 3.3],

L= T ()

This completes the proof. O

Proposition 4.2. Let s = {s;}32, € Hk AT be associated with a monic Jacobi matriz
J, and let N'(s) = {n;}32, be a set of ‘normal indices of the sequence s, where n; = j
and ng = 0. Let J = £ + ol be its LU — factorization with the shift o of the form
(4.60)—(4.62). Then we have the following:
(1) the shifted Darboux transformation without parameter of J is a monic Jacobi
matric J(p) =L + « such that

ot (L1 1
19\ dg ' dg
1

1 /1 1
S (e 1
g _ (d3)2e1g “t g (dg+dg) . (4.65)

S S
(d3)21315 g \ag g
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(2) The polynomials of the first and the second kind of the matriz J®) take the
following form:

Pj_1(a) Pj_1(a)
Pj(?i)l(z): mp;; (2, ) and Q(P) (2 )77622] 1(z,a), 7 € N. (4.66)
(3) The m — function of the monic Jacobi matriz J®) is
z2—a)QF._,(z,«
md). 1 (2) = ( EQZH( ), (4.67)
’ Py (2 a)
Furthermore, mf&_l] admits the following asymptotic expansion:
(») __S1— Q8o S2j—1 — (S22 1 g
m[oyj_l](z) = - T +o <22]_1> ,  Z=o0. (4.68)

Proof. Calculating & + oI we obtain (4.65). By [15, Theorwm 3.10],
(p) o 1 ) _ Pj(a) ‘ o Pj(z)ijl(Ot) — Pj(Oé)ijl(Z)
Pj—l(z) T . _a (PJ(Z) Pj_l(a)Pjil(Z) = (Z—()L)Pj_l(()é) :
On the other hand, by (3.29), (3.26), and (4.63),

P2+i—1(z7a) = -

Consequently, Pj@l(z) = —515(’;_(2)) P%_l(z, «) for all j € N.

By [15, Theorwm 3.13],

A0 = (@) - 220,100 ) - LB = A
and by (3.29), (3.26), (4.63),
Q;j_l(z,oz) = Q,;(2)Pj— 1(104;2 ~ ()Q)QJ 1(2 )

d o

Therefore, we get Q(p) (z) = L= 1('1)@2] 1(z,a) for all j € N,
Statement (3) directly follows from (2.21) and (4.66). This competes the proof. O

Corollary 4.3. Let J = £81 + ol be its £ — factorization with a shift a of the form
(4.60)(4.62) and let J®P) = UL + ol be the shifted Darbouz transformation of the matrix
J. Let P (z,a) and Qf (z,a) be Stieltjes polynomials of the first and the second kind
with the shift o, respectively. Then the m — function of the matriz J can be calculated by
the following formula:

;rjfl(z? a) 50

o = — . 4.69
mp,j-1)(2) P;j_l(z,oe) z—a« (4.69)

Proof. By [15, Proposition 3.19],

midyy(2) = (2 = amio () + s
and by (4.67), we obtain (4.69). O

Remark 4.4. According to formula (4.65), we can see that the “lengths” [ and the
“masses” dj switch places. If we set d;i1 := [ and [; := df for all j € N, then we obtain
that J(P) is associated with some part of the Krein-Stieltjes string with the atoms (d;,l;)
(i.e., in our case, we mean that J®) is associated with the full Krein-Stieltjes string
without the first atom (dy,11)).
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Proposition 4.5. Let s = {s;}32, € Hi:’a_reg be associated with a monic Jacobi matrix
J, and let N(s) = {n;}520 be a set of normal indices of the sequence s, where nj = j and
ng = 0. Let J = L84+l be its LU — factorization with a shift o of the form (4.60)—(4.62)
and J®) = UL + ol be its shifted Darbous transformation without parameter. Then J®)
is associated with the following J— fraction:

b(p)
— 0 ( , (4.70)
(p) b1p)
ag’(2) ”
ai” ()
where the polynomials a§-p) and the numbers bgp) are given by
1 1 (1 1
b = 81 — asg, bP) = _ a(»p_) =z—a——|—=+-—1],7€N (471
’ T A ) i\d7  dip

Proof. Due to (4.68), we obtain sép) = s1 — asg, and by (2.12), we get b(()p) = 51 — asp.
By (4.65), the monic Jacobi matrix J®) is associated with the J—fraction (4.70) with
atoms (a(»p), bgp)) given by (4.71). This completes the proof. O

(3

Corollary 4.6. Let monic Jacobi matrix J admit a £ + ol factorization of the form
(4.60)(4.62) and J®P) = UL+l be its shifted Darbouz transformation without parameter.

Then the atoms (az(-p), bl(»p)) of the J—fraction associated with J®) can be written in terms
of the polynomials of the first kind as

P2(a) +b;P2 4 (a)

biP;_1(a)Pjy1(e)
pP) = oIl It and aP (2) =2z —a+ 2 4.72
! P?(a) =) Pj_1(a)Pj(a) (4.72)
Proof. By (4.71) and Lemma 3.9, we obtain
b(-p) _ 1 _ 1 _ 1 _ bij_l(Oé)Pj_»,_l(Oé)-
(d§1)2I805 dSy 19 dg 5y, Pj(a) . Pj(a) Pj2 (a)
Pjp1(a) biPja(a)
) 1 (1 1 ) 11 11
G =z-a—g | gt o |=f-a- 50 T a,
’ j (di A Ifdy 13 dfy,
2 2
g Bl bR B bB ()
Pj_1(a) Pj(a) Pj_1(a)P;(a)
So, (4.72) is proved. This completes the proof. O

5. SHIFTED DARBOUX TRANSFORMATION OF A MONIC GENERALIZED JACOBS
MATRICES. THE CASE 2 X 2

Now we study the shifted Darboux transformation of the generalized Jacobi matrices
J. We consider the case, where the all the entries of J are 2 x 2 matrices, i.e., the all
normal indices of the sequence s satisfy the following condition:

Nj41 — Ny = 2.

Let us choose o € R such that the all polynomials of the first kind P, do not vanish
at a, i.e.,

Py, (a) #0. (5.73)
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By (3.29) the generating polynomials a;(z) = 2% + agj)z + aéj) can be rewritten as

ap(z) = 22 + ago)z - a(ago) +a)— o and
2, () () 1 1 (574)
aj(z)zz +ag Z_O‘(al +O‘)_da & ge o
sly il

where the numbers d§ and [ are calculated by (3.50)— (3.51). Hence, the generalized
Jacobi matrix J takes the following form:

¢ D1
=% e, .| (5.75)

Due to (3.29) and (5.74), the entries take the form

0 1 0 0
— 1 o 1
Can a(a§0)+a) + a0 7a§0) B dj_1d;(1%_,)? 0f>
191 J J\t5—1 (5.76)
0 1 0 0
¢, = j 1 1 j d®; = .
R e e T ) Bt (1 0)

J+1%5 J+17+1
Theorem 5.1. Let J be a monic Jacobi matriz associated with a sequence s = {s;}5°, €
’H’;ﬁ’a_reg, and let N'(s) = {n;}52, be a set of normal indices of the sequence s, where
nj+1 —n; =2 and ng = 0. Let P,, be polynomials of the first kind corresponding to the
matriz J, and let o be some real number such that P, (a) # 0 for all j € Z. Then the
monic Jacobi matriz J admits the following £51 — factorization with the shift a:

3= LU+ al, (5.77)

where I is an infinite identity matriz, and the factorization matrices £ and 3 are defined
by
Q[Q 0 L[O 90

g=g A | and u= sy |, (5.78)

the entries take the form

0 0 — 1
1 0 0 0
A= L= 1 U= 1 dD;= 5.79
J (ﬂgj)a 1)7 ) 0 T [ W 0 an J (1 0)3 ( )
LI L gL

where di and I are calculated by (3.50)- (3.51).

k', a—reg

Proof. Let the sequence s € H,, , i.e. there is a real number « such that P, (a) # 0.
Then, by [15, Theorem 3.1], Lemma 3.9, and Corollary 3.10, we obtain a £il—factorization
of the form (5.77) — (5.80). This completes the proof. O

Now, we construct a shifted Darboux transformation of the generalized Jacobi matrix
J (5.75)—(5.76). By [15], we get the following statements.

Proposition 5.2. Let s = {s;}32, € Hi:’a_reg be associated with a monic Jacobi matrix
J, and let N'(s) = {n;}32 be a set of normal indices of the sequence s, where nji1—n; =2
and ng = 0. Let J = LU+ ol be its L3 — factorization with a shift o of the form (4.60)—
(4.62). Then we have the following:
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(1) the shifted Darbouzx transformation without parameter of J is the monic Jacobi

matrix
_ago) -« 1
1
1 1
e B 1
e &) 1
3(1)) =L+ al = dzly 2) . (580)
d,}la —a; —a 1
3"2

1

g a

(2) Polynomials of the first and the second kind of the matriz J®) can be calculated

by
P y(2) = Pu, (=) and PR (2) = —— (P (5) + = Pu, () )
9j2(2) = Pn;_1(2) and Py;” (2 =T a n; (2 +d‘¥l(¥ n;_1(2) |
flf (5.81)
5 2(2) = (2 = )Qu, () and Q3 1(2) = Qn, (2) + gz @, 1 (2), G EN.
J

(3) 3P is associated with a sequence of real numbers sP) = {sgp)}g’io, where s®) is
connected with the sequence s = {s;}2, as follows:

sl(-p) =841 —s;, €Ly (5.82)
Proof. The first statement directly follows from matrix multiplication & and £. We

see that J® = U + o is a shifted Darboux transformation of the matrix J. By [15,
Theorems 3.3-3.4], we get

P ,(2) = P, (2) and Q%) ,(2) = (2 — 0)Qu,_, (2),

1 Py,
PQ(?)—l(z):Z_a (P"j(z)_%P”.i—l(z)>; (583)
Py, .
wd QF)1(2) = @0, ()~ 54000, () 5 €1
Pnj (0‘) 1

(o] = aogz- Substituting this into (5.83) we obtain (5.81).
i1 il

The third statement follows from [15,'Corollary 3.2]. This completes the proof. 0

Due to Lemma 3.9, —

Proposition 5.3. Let s = {s;}2, € Hfzi’a_mg be associated with the monic Jacobi
matriz J, and let N'(s) = {n;}520 be a set of normal indices of the sequence s, where
Nnjt1—n; =2 and ng = 0. Let J = L+ ol be its L4 — factorization with a shift o
of the form (4.60)—(4.62). Then the shifted Darbouz transformation without parameter,
3P = UL + al, is associated with the following J—fraction:

- bo , (5.84)
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where
agﬂz(z) = %ﬁz), ag;),l(z) =z—-aq, b(()p) = by,
i
oy = Talza and b, = dal . Q€N 55)
[ i+1%

Proof. Due to (5.82), we get
s(()p) =s1—aso={n1=2=50=0,s1 #0and s; = by} = bo. (5.86)

Consequently, b((Jp) = by. By (3.29) and(5.74), we obtain

(i—1)
me(z) = ”“1617@“‘, i eN. (5.87)
K3

Due to representation (5.80) and (5.86)—(5.87), we obtain that the J-fraction associated
with J® takes the form (5.84). This completes the proof. O

Corollary 5.4. Let s = {s;}32, € Hﬁ;’a_mg be associated with a monic Jacobi matriz J,
and let N'(s) = {n;}32 be a set of normal indices of the sequence s, where nji1 —n; =2
and ng = 0. Let J admit an L8 — factorization with a shift « of the form (4.60)—(4.62),
and let J®P) = UL + ol be its shifted Darbouz transformation. Then the atoms (al(-p)7 bgp))

of the J—fraction (5.84) associated with J®) can be rewritten as follows:

o) () = G2 0mnl) o ) a b =,
Z—«
5.88)
P, () biPn, () . (
b = - gpd b, = i N.
SR NN

Proof. In view of representation (5.85) and by (3.28), we get

o) (2) = mi(2) _ ai-1(2) —aima(@)

d¢ zZ—«
By Lemma 3.9, bgp) in (5.85) can be rewritten as (5.88). This completes this proof. [

Proposition 5.5. Let J be the monic generalized Jacobi matrices defined by (5.75)—(5.76)
and let 3P) = UL + ol be the shifted Darbous transformation of J. Then the m—function
of 3P is given by

+
(») _ (=)@ (z,0)
migi—(2) = W (5.89)
Furthermore, mfg )Fl] admits the following asymptotic expansion:
(p) 81 S — sy $2i—1 — (S22 1 —
m[o’i_l](z) ——— - - g +o0 (zQil) , z=00. (5.90)

Proof. Let us prove (5.89). In view of the representation matrix, we consider two cases.
Suppose i :=2j — 1 and j € N. Then

(») (») Q5 (2)
Mg 1)(2) =My, g (2) = o {by (3.26) and (5.83)} =
sz—1(z)
Assume i := 2j and j € N. Then

(p) +
(p) (p) sz—1(z) (z— a)QQj(z, a)
myg 1 (2) =mg g, 1(2) = ——2+—= = {by (3.26) and (5.81)} = ——F—————.

[0,i~1] [0,2j-1] PP (2) Pyi(z,a)

So, (5.89) is proved. By (2.22) and (5.82), we obtain that (5.90) holds. O

(z = a)Q3;_1 (2, @)
ngil(z,a) '
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