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GREEN MEASURES FOR TIME CHANGED MARKOV PROCESSES

YURI KONDRATIEV AND JOSÉ LUÍS DA SILVA

Abstract. In this paper we study Green measures for certain classes of random time
change Markov processes where the random time change are inverse subordinators.
We show the existence of the Green measure for these processes under the condition of
the existence of the Green measure of the original Markov processes and they coincide.
Applications to fractional dynamics in given.

У цiй роботi дослiджуються мiри Грiна для деяких класiв маркiвських процесiв
з випадковою замiною часу, де випадкова замiна часу є оберненим субординатором.
Показано iснування мiри Грiна для цих процесiв за умови iснування мiри Грiна
вихiдних маркiвських процесiв i що вони збiгаються. Також даються застосування
отриманих результатiв до динамiки процесiв iз дробовими похiдними.

1. Introduction

One of the most important questions in the theory of random processes is related
to the study of their asymptotic behavior. There are several possibilities to formulate
such questions. For example, let X(t), t \geq 0, be a random process in \BbbR d such that
X(0) = x \in \BbbR d. Denote by \mu x

t the one-dimensional distribution of the process at time
t. Then the natural question is the limiting behavior of \mu x

t for t \rightarrow \infty . Of course, we
can expect a positive answer to this question only for certain particular classes of these
processes. In the case of Markov processes, an essential technique to study the time
asymptotic is related to the Fokker-Planck equation

\partial 

\partial t
\mu x
t = L\ast \mu x

t ,

where L is the generator of the Markov process. In that case, \mu x
t is nothing but the

transition probability measure Pt(x, \mathrm{d}y) or the heat kernel for L which may be analyzed
for certain particular cases, see e.g., [12, 10] and numerous references therein. On the other
hand, even for very simple classes of processes the time-space behavior of Pt(x, \mathrm{d}y) may
be very complicated, see [11] for an analysis of continuous time random walks (compound
Poisson processes) in \BbbR d.

An alternative way is to consider averaged characteristics of Markov processes. In
particular, we introduce the Green measure

\scrG (x, \mathrm{d}y) :=
\int \infty 

0

Pt(x, \mathrm{d}y) \mathrm{d}t.

The notion of the Green measure is closely related to the concept of potential in stochastic
analysis, see [21] for details. In the latter paper we have shown the existence of Green
measures for certain classes of Markov processes and analyzed their properties.

In this paper we are interested in transformations of Markov processes by means of
independent random time changes. The resulting process is again a Markov process. In
particular, as random time change we consider inverse of subordinators. In the literature
most of the results in this direction are related to inverse stable subordinators, see e.g.,
[23, 3, 24, 2, 22]. In [15] the authors study the spectral heat contents for time changed
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Brownian motions where the time change is given either by a subordinator or an inverse
subordinator with the underlying Laplace exponent being regularly varying at infinity
with index \beta \in (0, 1). But it is also possible to consider more general inverse subordinators
and study such random processes and related properties, see e.g., [6, 17, 16].

Let X be a Markov process which admits a Green measure \scrG (x, \mathrm{d}y) and Y its random
time change by an inverse subordinator. Our aim is to study the asymptotic behavior of
the process Y for different classes of inverse subordinators. The first main point concerns
the existence of Green measure for these time changed processes, that is, applying the
above definition of a Green measure leads to divergent integrals in all interesting cases.
To overcome this difficulty we introduce the concept of renormalized Green measure

\scrG r(x, \mathrm{d}y) := \mathrm{l}\mathrm{i}\mathrm{m}
T\rightarrow \infty 

1

N(T )

\int T

0

\nu xt (\mathrm{d}y) \mathrm{d}t,

where \nu xt is the marginal distribution of Y (t). The renormalization N(T ) is uniquely
defined by the inverse subordinator under consideration, see (2.16) and (4.21) below. Such
kind of normalizations are well known in the theory of additive functionals for random
processes. This enables us to state the main contribution of this paper as follows: If the
initial Markov process has a Green measure, then the time changed process will have
a renormalized Green measure which coincides with the Green measure for the Markov
process, see Theorem 6 below. An interpretation of this result is very easy. In the time
changed process the evolution is delayed by the random environment and hence as a result
is slower. That means a slower decay in t leads to a divergent integral in the definition of
the Green measure.

The paper is organized as follows. In Section 2 we describe the class of subordinators we
are interested in as well as the corresponding inverse subordinators. The main assumption
of these classes is given in terms of the corresponding Laplace exponent, see assumption (H)
below. In addition, we recall a result on the asymptotic relating the density of the inverse
subordinator and admissible kernels satisfying (H), see Theorem 4. We provide many
examples which fulfill the assumptions in Example 2.1. Sections 3 and 4 we introduce the
main object needed and show the main result of the paper, see Theorem 6. Finally, in
Section 5 we make an application to fractional dynamics for the special class of Markov
processes known as compound Poisson processes. More precisely, if u(t, x) denotes the
solution of the Kolmogorov equation and v(t, x) is the solution of the associated fractional
evolution equation, then the following average result holds, see Theorem 9

1

N(t)

\int t

0

v(s, x) \mathrm{d}s \sim 
\int \infty 

0

u(s, x) \mathrm{d}s =

\int 
\BbbR d

f(y)\scrG (x,\mathrm{d}y), t \rightarrow \infty ,

where f is a suitable initial data.

2. Random Times and Fractional Analysis

In this section we introduce the classes of inverse subordinators we are interested in.
Associated to these classes we define a kernel k \in L1

\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR +) which is used to define a
general fractional derivatives (GFD), see [19] for details and applications to fractional
differential equations. These admissible kernels k are characterized in terms of their
Laplace transforms \scrK (\lambda ) as \lambda \rightarrow 0, see assumption (H) below.

Let S = \{ S(t), t \geq 0\} be a subordinator without drift starting at zero, that is, an
increasing Lévy process starting at zero, see [4] for more details. The Laplace transform
of S(t), t \geq 0 is expressed in terms of a Bernstein function \Phi : [0,\infty )  - \rightarrow [0,\infty ) (also
known as Laplace exponent) by

\BbbE (e - \lambda S(t)) = e - t\Phi (\lambda ), \lambda \geq 0.
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The function \Phi admits the representation

\Phi (\lambda ) =

\int 
(0,\infty )

(1 - e - \lambda \tau ) \mathrm{d}\sigma (\tau ), (2.1)

where the measure \sigma (called Lévy measure) has support in [0,\infty ) and fulfills\int 
(0,\infty )

(1 \wedge \tau ) \mathrm{d}\sigma (\tau ) < \infty . (2.2)

In what follows we assume that the Lévy measure \sigma satisfy

\sigma 
\bigl( 
(0,\infty )

\bigr) 
= \infty . (2.3)

Using the Lévy measure \sigma we define the kernel k as follows

k : (0,\infty )  - \rightarrow (0,\infty ), t \mapsto \rightarrow k(t) := \sigma 
\bigl( 
(t,\infty )

\bigr) 
. (2.4)

Its Laplace transform is denoted by \scrK , that is, for any \lambda \geq 0 one has

\scrK (\lambda ) :=

\int \infty 

0

e - \lambda tk(t) \mathrm{d}t. (2.5)

The relation between the function \scrK and the Laplace exponent \Phi is given by

\Phi (\lambda ) = \lambda \scrK (\lambda ), \forall \lambda \geq 0. (2.6)

In what follows we make the following assumption on the Laplace exponent \Phi (\lambda ) of
the subordinator S.

(H): \Phi is a complete Bernstein function (more precisely, the Lévy measure \sigma has a
completely monotone density \rho (t) with respect to the Lebesgue measure, that is,
( - 1)n\rho (n)(t) \geq 0 for all t > 0, n = 0, 1, 2, . . .) and the functions \scrK , \Phi satisfy

\scrK (\lambda ) \rightarrow \infty , as \lambda \rightarrow 0; \scrK (\lambda ) \rightarrow 0, as \lambda \rightarrow \infty ; (2.7)

\Phi (\lambda ) \rightarrow 0, as \lambda \rightarrow 0; \Phi (\lambda ) \rightarrow \infty , as \lambda \rightarrow \infty . (2.8)

Example 2.1. (1) A classical example of a subordinator S is the so-called \alpha -stable
process with index \alpha \in (0, 1). Specifically, a subordinator is \alpha -stable if its Laplace
exponent is

\Phi (\lambda ) = \lambda \alpha =
\alpha 

\Gamma (1 - \alpha )

\int \infty 

0

(1 - e - \lambda \tau )\tau  - 1 - \alpha \mathrm{d}\tau .

In this case it follows that the Lévy measure is \mathrm{d}\sigma \alpha (\tau ) =
\alpha 

\Gamma (1 - \alpha )\tau 
 - (1+\alpha ) \mathrm{d}\tau , the

corresponding kernel k\alpha has the form k\alpha (t) = g1 - \alpha (t) :=
t - \alpha 

\Gamma (1 - \alpha ) , t \geq 0 and its
Laplace transform is \scrK \alpha (\lambda ) = \lambda \alpha  - 1, \lambda \geq 0.

(2) The Gamma process Y (a,b) with parameters a, b > 0 is another example of a
subordinator with Laplace exponent

\Phi (a,b)(\lambda ) = a \mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
1 +

\lambda 

b

\biggr) 
=

\int \infty 

0

(1 - e - \lambda \tau )a\tau  - 1e - b\tau \mathrm{d}\tau ,

the second equality is known as the Frullani integral. The Lévy measure is given
by d\sigma (a,b)(\tau ) = a\tau  - 1e - b\tau \mathrm{d}\tau . The associated kernel k(a,b)(t) = a\Gamma (0, bt), t > 0

and its Laplace transform is \scrK (a,b)(\lambda ) = a\lambda  - 1 \mathrm{l}\mathrm{o}\mathrm{g}(1 + \lambda 
b ), \lambda > 0.

(3) Let 0 < \beta < 1 and 0 < \alpha < 1 be given and S\alpha ,\beta (t), t \geq 0 the driftless subordinator
with Laplace exponent given by

\Phi \alpha ,\beta (\lambda ) = \lambda \alpha + \lambda \beta .
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It is clear from item 1 above that the corresponding Lévy measure \sigma \alpha ,\beta is the
sum of two Lévy measures, that is,

\mathrm{d}\sigma \alpha ,\beta (\tau ) = \mathrm{d}\sigma \alpha (\tau ) + \mathrm{d}\sigma \alpha (\tau ) =
\alpha 

\Gamma (1 - \alpha )
\tau  - (1+\alpha ) \mathrm{d}\tau +

\beta 

\Gamma (1 - \beta )
\tau  - (1+\beta ) \mathrm{d}\tau .

Then the associated kernel k\alpha ,\beta is

k\alpha ,\beta (t) := g1 - \alpha (t) + g1 - \beta (t) =
t - \alpha 

\Gamma (1 - \alpha )
+

t - \beta 

\Gamma (1 - \beta )
, t > 0

and its Laplace transform is \scrK \alpha ,\beta (\lambda ) = \scrK \alpha (\lambda ) +\scrK \beta (\lambda ) = \lambda \alpha  - 1 + \lambda \beta  - 1, \lambda > 0.

Denote by D the inverse process of the subordinator S, that is,

D(t) := \mathrm{i}\mathrm{n}\mathrm{f}\{ s \geq 0 | S(s) \geq t\} = \mathrm{s}\mathrm{u}\mathrm{p}\{ s \geq 0 | S(t) \leq s\} . (2.9)

For any t \geq 0 we denote by Gk
t (\tau ) := Gt(\tau ), \tau \geq 0 the marginal density of D(t) or,

equivalently

Gt(\tau ) \mathrm{d}\tau = \partial \tau P (D(t) \leq \tau ) = \partial \tau P (S(\tau ) \geq t) =  - \partial \tau P (S(\tau ) < t).

As the density Gt(\tau ) plays an important role in what follows, we collect the most
important properties of it.

Remark 1. If S is the \alpha -stable process, \alpha \in (0, 1), then the inverse process D(t) has a
Mittag-Leffler distribution (cf. Prop. 1(a) in [5]), namely

\BbbE (e - \lambda D(t)) =

\int \infty 

0

e - t\tau Gt(\tau ) \mathrm{d}\tau =

\infty \sum 
n=0

( - \lambda t\alpha )n

\Gamma (n\alpha + 1)
= E\alpha ( - \lambda t\alpha ). (2.10)

It follows from the asymptotic behavior of the Mittag-Leffler function E\alpha that \BbbE (e - \lambda D(t)) \sim 
Ct - \alpha as t \rightarrow \infty . Using the properties of the Mittag-Leffler function E\alpha , we can
show that the density Gt(\tau ) is given in terms of the Wright function W\mu ,\nu , namely
Gt(\tau ) = t - \alpha W - \alpha ,1 - \alpha (\tau t

 - \alpha ), see [8] for more details.

For a general subordinator, the following lemma determines the t-Laplace transform
of Gt(\tau ), with k and \scrK given in (2.4) and (2.5), respectively. For the proof see [19] or
Lemma 3.1 in [27].

Lemma 2. The t-Laplace transform of the density Gt(\tau ) is given by\int \infty 

0

e - \lambda tGt(\tau ) \mathrm{d}t = \scrK (\lambda )e - \tau \lambda \scrK (\lambda ). (2.11)

The double (\tau , t)-Laplace transform of Gt(\tau ) is\int \infty 

0

\int \infty 

0

e - p\tau e - \lambda tGt(\tau ) \mathrm{d}t\mathrm{d}\tau =
\scrK (\lambda )

\lambda \scrK (\lambda ) + p
. (2.12)

For any \alpha \in (0, 1) the Caputo-Dzhrbashyan fractional derivative of order \alpha of a function
u is defined by (see e.g., [14] and references therein)\bigl( 

\BbbD \alpha 
t u

\bigr) 
(t) =

d

dt

\int t

0

k\alpha (t - \tau )u(\tau ) \mathrm{d}\tau  - k\alpha (t)u(0), t > 0, (2.13)

where k\alpha is given in Example 2.1-(1), that is, k\alpha (t) = g1 - \alpha (t) =
t - \alpha 

\Gamma (1 - \alpha ) , t > 0. In general,
starting with a subordinator S and the kernel k \in L1

\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR +) given as in (2.4), we may
define a differential-convolution operator by\bigl( 

\BbbD (k)
t u

\bigr) 
(t) =

d

dt

\int t

0

k(t - \tau )u(\tau ) \mathrm{d}\tau  - k(t)u(0), t > 0. (2.14)
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The operator \BbbD (k)
t is also known as generalized fractional derivative. The distributed

order derivative \BbbD (\mu )
t is an example of such operator, corresponding to

k(t) =

\int 1

0

g1 - \alpha (t) \mathrm{d}\alpha =

\int 1

0

t - \alpha 

\Gamma (1 - \alpha )
\mu (\alpha ) \mathrm{d}\alpha , t > 0, (2.15)

where \mu (\tau ), 0 \leq \tau \leq 1 is a positive weight function on [0, 1], see [1, 7, 13, 18, 9, 24] for
applications.

Now we introduce a suitable class of admissible k(t) an state and essential theorem
which this class obeys, see Theorem 4 below.

Definition 3 (Admissible kernels - \BbbK (\BbbR +)). The subset \BbbK (\BbbR +) \subset L1
\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR +) of admissible

kernels k is defined by those elements in L1
\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR +) satisfying (H) such that for some s0 > 0

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{i}\mathrm{n}\mathrm{f}
\lambda \rightarrow 0+

1

\scrK (\lambda )

\int s0/\lambda 

0

k(t) dt > 0 (A1)

and

\mathrm{l}\mathrm{i}\mathrm{m}
t,r\rightarrow \infty 
t
r
\rightarrow 1

\biggl( \int t

0

k(s) ds

\biggr) \biggl( \int r

0

k(s) ds

\biggr)  - 1

= 1. (A2)

The following theorem establishes an asymptotic relation between the density Gt(\tau )
and the kernel k \in \BbbK (\BbbR +). For the proof, see [17].

Theorem 4. Let \tau \in [0,\infty ) be fixed and k \in \BbbK (\BbbR +) a given admissible kernel. Define
the map G\cdot (\tau ) : [0,\infty )  - \rightarrow \BbbR +, t \mapsto \rightarrow Gt(\tau ) such that

\int \infty 
0

e - \lambda tGt(\tau ) dt exists for all \lambda > 0.
Then

\mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

\biggl( \int t

0

Gs(\tau ) ds

\biggr) \biggl( \int t

0

k(s) ds

\biggr)  - 1

= 1 (2.16)

or

Mt

\bigl( 
Gt(\tau )

\bigr) 
:=

1

t

\int t

0

Gs(\tau ) ds \sim 
1

t

\int t

0

k(s) ds =: Mt

\bigl( 
k(t)

\bigr) 
, t \rightarrow \infty 

and Mt

\bigl( 
Gt(\tau )

\bigr) 
is uniformly bounded in \tau \in \BbbR +.

3. Markov Processes in Random Time

Let X = \{ X(t), t \geq 0\} be a Markov process in \BbbR d such that X(0) = x \in \BbbR d almost
surely. We are interested in a new process Y = \{ Y (t), t \geq 0\} which is constructed by a
random time change in X. Namely, if D(t), t \geq 0 denotes (as in Section 2) the inverse of
a subordinator S independent of X, then we define Y by

Y (t) := X(D(t)), t \geq 0.

Note that inverse subordinators have found many applications in probability theory,
see [22] for a detailed discussions and several related references. In particular, for their
relationship with local times of some Markov processes, see [4]. Similarities between
inverse subordinators and renewal processes also are well studied. There are important
applications of inverse subordinators in finance and physics. We stress that random
time processes may be considered as mathematical realizations of the general concept of
biological time known in biology and ecology since the pioneering works of V. I. Vernadsky
[28].

The first natural question which appear here concerns the possible relations between
the characteristics of the processes X(t) and Y (t). To the best of our knowledge this
question was for the first time discussed by A. Mura, M.S. Taqqu and F. Mainardi in [25].
The authors considered the diffusion processes with an implicitly defined class of random
times D(t). Later similar questions were discussed by several authors, see e.g., [27] and
references therein.
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The situation there may be described as follows. Define a function

u(t, x) := \BbbE [f(X(t))], t > 0, x \in \BbbR d

for a proper f : \BbbR d \rightarrow \BbbR . This is the solution of the Kolmogorov equation
\partial 

\partial t
u(t, x) = Lu(t, x), (3.17)

u(0, x) = f(x),

where L is the generator of the process X(t). Let us define a similar function for Y (t):

v(t, x) = \BbbE [f(Y (t))].

Then this function satisfies the following fractional evolution equation:

D
(k)
t v(t, x) = Lv(t, x). (3.18)

Moreover, the subordination formula holds:

v(t, x) =

\int \infty 

0

u(\tau , x)Gt(\tau ) \mathrm{d}\tau , (3.19)

where, as before, Gt(\tau ) is the density of the inverse subordinator D(t).
If \mu x

t and \nu xt denote the marginal distributions of X(t) and Y (t), respectively, then
the subordination relations for these distributions is given by

\nu xt =

\int \infty 

0

\mu x
\tau Gt(\tau ) \mathrm{d}\tau . (3.20)

In the next section we use these relations to study the renormalized Green measure
associated to the subordinated process Y .

4. Renormalized Green Measures

Let X be a Markov process and Y be the time changed process as in Section 3 with all
our notations from there. For every jump of the subordinator S there is a corresponding
flat period of its inverse D. These flat periods represent trapping events in which the
test particle gets immobilized in a trap. Trapping slows down the overall dynamics of the
initial Markov process X. Our aim is to analyze how these traps will be reflected in the
asymptotic behavior of the changed process Y .

To study the time asymptotic of random processes there is the useful notion of Green
measures, see for example [21] for this notion. More precisely, if Z(t), t \geq 0 is a random
process in \BbbR d with Z(0) = x \in \BbbR d and, for each t \geq 0, \gamma x

t denotes its marginal distribution,
then the Green measure of Z is defined by

\scrG (x, \mathrm{d}y) :=
\int \infty 

0

\gamma x
t (\mathrm{d}y) \mathrm{d}t

if this integral converges. In [21] we have shown the existence of the Green measures for
certain classes of Markov processes in \BbbR d with the necessary condition d \geq 3. For d = 1, 2
we have to modify this definition by means of a renormalized Green measure, namely

\scrG r(x, \mathrm{d}y) = \mathrm{l}\mathrm{i}\mathrm{m}
T\rightarrow \infty 

1

N(T )

\int T

0

\mu x
t (\mathrm{d}y) \mathrm{d}t.

This approach (in a bit different framework) is well know in the theory of additive
functionals for Markov processes, see [20] for an extended list of references.

The following lemma shows that the Green measure for Y (t) does not exists for a
general inverse subordinator and arbitrary Markov process X(t).
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Lemma 5. Under the assumptions formulated above for any dimension d the Green
measure for Y (t) does not exists.

Proof. Using the subordination formula (3.20) we obtain\int \infty 

0

\nu xt \mathrm{d}t =

\int \infty 

0

\int \infty 

0

\mu x
\tau Gt(\tau ) \mathrm{d}\tau \mathrm{d}t.

But we know that for each \tau , it follows from (2.7), (2.8) and (2.11) that\int \infty 

0

Gt(\tau ) \mathrm{d}t = \scrK (0) = +\infty .

Therefore, the considered integral is divergent. \square 

As the Green measure does not exists for a general subordinated process Y , we have
to consider instead a renormalized Green measure. More precisely, we would like to find
the following limit

\scrG r(x, \mathrm{d}y) := \mathrm{l}\mathrm{i}\mathrm{m}
T\rightarrow \infty 

1

N(T )

\int T

0

\nu xt (\mathrm{d}y) \mathrm{d}t.

Theorem 6. Assume that the Markov process X(t) in \BbbR d, d \geq 3 has a Green measure
\scrG (x,\mathrm{d}y) and define

N(T ) :=

\int T

0

k(s) \mathrm{d}s, T \geq 0. (4.21)

Then the renormalized Green measure for Y (t) exists and

\scrG r(x, \mathrm{d}y) = \scrG (x,\mathrm{d}y).

Proof. Using the subordination relation (3.20) the renormalized Green measure \scrG r(x, \mathrm{d}y)
may be written as

\scrG r(x, \mathrm{d}y) = \mathrm{l}\mathrm{i}\mathrm{m}
T\rightarrow \infty 

1

N(T )

\int T

0

\int \infty 

0

\mu x
\tau (\mathrm{d}y)Gt(\tau ) \mathrm{d}\tau \mathrm{d}t.

Now using Fubini theorem and Theorem 4 it follows that

\scrG r(x, \mathrm{d}y) := \mathrm{l}\mathrm{i}\mathrm{m}
T\rightarrow \infty 

1

N(T )

\int T

0

\nu xt (\mathrm{d}y) \mathrm{d}t =

\int \infty 

0

\mu x
t (\mathrm{d}y) \mathrm{d}t = \scrG (x, \mathrm{d}y).

This shows the statement of the theorem and finish the proof. \square 

Remark 7. As we mentioned at the beginning of this section, random time produces
trapping (or environments, or friction) effects in the Markov dynamics. That is one reason
why in physics such processes are very useful. As the trapping slows down the Markov
dynamics, then the usual definition of Green measures produces a divergent integral. To
compensate this divergence we have to consider a renormalization with a time depended
factor. The time asymptotic of the renormalized Green measure coincides with the Green
measure of the initial Markov process.

5. Applications to Fractional Dynamics

Let u(t, x) be the solution of equation (3.17) and v(t, x) the corresponding solution of
the fractional equation (3.18). Our goal is to compare the behaviors in t for these solutions.
To this end, at first we restrict the class of Markov processes under considerations. Namely,
let a : \BbbR d \rightarrow \BbbR be a fixed kernel with the following properties:

(1) Symmetric, a( - x) = a(x), for every x \in \BbbR d.
(2) Positive, continuous and bounded, a \geq 0, a \in Cb(\BbbR d).
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(3) Integrable \int 
\BbbR d

a(y) \mathrm{d}y = 1.

Consider the generator L defined by

(Lf)(x) =

\int 
\BbbR d

a(x - y)[f(y) - f(x)] \mathrm{d}y = (a \ast f)(x) - f(x), x \in \BbbR d.

In particular, L\ast = L in L2(\BbbR d) and L is a bounded linear operator in all Lp(\BbbR d), p \geq 1.
We call this operator the jump generator with jump kernel a. The corresponding Markov
process is of a pure jump type and is known in stochastic as compound Poisson process,
see [26].

We make the following assumptions on the kernel a.
(A): The jump kernel a is such that the Fourier transform \^a \in L1(\BbbR d) and it has

finite second moment, that is,\int 
\BbbR d

| x| 2a(x) \mathrm{d}x < \infty .

Define the Banach space CL(\BbbR d) as the set of all bounded continuous and integrable
functions on \BbbR d, that is, CL(\BbbR d) = Cb(\BbbR d)\cap L1(\BbbR d). The norm in this space is constructed
as the sum of Cb(\BbbR d) and L1(\BbbR d) norms. The following theorem was shown in [21].

Theorem 8. Let a be a kernel which satisfies all the above assumptions and d \geq 3.
Consider the solution u(t, x) to (3.17) with an initial data f \in CL(\BbbR d). Then\int \infty 

0

u(t, x) \mathrm{d}t =

\int 
\BbbR d

f(y)\scrG (x,\mathrm{d}y),

where \scrG (x, \mathrm{d}y) is the Green measure of the corresponding Markov jump process.

This result gives an averaged characteristic of the dynamics u(t, x) corresponding to
the Markov processes via the Kolmogorov equation. On the other hand, for the fractional
dynamics v(t, x) (the solution of equation (3.18)) we have only information about the
Cesaro mean

Mt(f) =
1

t

\int t

0

v(s, x) \mathrm{d}s.

The asymptotic of this mean was studied in [17]. In particular, when \Phi (\lambda ) = \lambda \alpha , 0 < \alpha < 1

the kernel k(t) = t - \alpha 

\Gamma (1 - \alpha ) and the GFD corresponds to the Caputo-Dzhrbashyan fractional
derivative of order \alpha . For this class of kernels we have

Mt(f) \sim Ct - \alpha , t \rightarrow \infty .

With the help of Theorem 8 we may also derive an average result for the fractional
dynamics v(t, x).

Theorem 9. Under assumptions of Theorem 8 holds

1

N(t)

\int t

0

v(s, x) \mathrm{d}s \sim 
\int 
\BbbR d

f(y)\scrG (x, \mathrm{d}y), t \rightarrow \infty .

Proof. Using (3.19) we have

1

N(t)

\int t

0

v(s, x) \mathrm{d}s =
1

N(t)

\int t

0

\int \infty 

0

u(\tau , x)Gs(\tau ) \mathrm{d}\tau \mathrm{d}s.

Again it follows from Fubini theorem, Theorem 4 and the definition of N(t) that

1

N(t)

\int t

0

v(s, x) \mathrm{d}s =

\int \infty 

0

u(\tau , x)

\biggl( 
1

N(t)

\int t

0

Gs(\tau ) \mathrm{d}s

\biggr) 
\mathrm{d}\tau  - \rightarrow 

t\rightarrow \infty 

\int \infty 

0

u(\tau , x) \mathrm{d}\tau .
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Then the result of the theorem follows from Theorem 8. \square 

Remark 10. (1) For concrete cases of jump kernels we have more information about
space decay of the Green measures, see [21]. It gives the possibility to extend the
statement of Theorem 9 to a wider class of the initial data f .

(2) The same result is true for the Brownian motion B(t) in \BbbR d for d \geq 3, see [21].
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