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DIFFUSION APPROXIMATION FOR TRANSPORT EQUATIONS
WITH DISSIPATIVE DRIFTS

LUCA DI PERSIO, YURI KONDRATIEV, AND VIKTORYA VARDANYAN

ABsTrRACT. We study stochastic differential equations with a small perturbation
parameter. Under the dissipative condition on the drift coefficient and the local
Lipschitz condition on the drift and diffusion coefficients we prove the existence
and uniqueness result for the perturbed SDE, also the convergence result for the
solution of the perturbed system to the solution of the unperturbed system when
the perturbation parameter approaches zero. We consider the application of the
above-mentioned results to the Cauchy problem and the transport equations.

Bupuarorbecst croxacTudHi audepeHIliaibHi PDIBHSHHS 3 HEBEJIMKUM IapaMeTp
30ypeHHs. 3a YMOBH AMCHUIIATUBHOCTI KoedirmienTy npetida y BUNaIKy, KOIU aApeiid
Ta KoedinieHTn audys3il 3a/10BOJIBHSIIOTE JIOKaJIbHINA ymoBu Jlimmmia, mpoBemeHO
iCHyBaHHsI Ta €IMHICTb PO3B’S3KYy 30yPEHOr'0 CTOXACTUYIHOIO MudEpPEHIiaJIbHOIo
piBHsHHA. Tako)k OTPHMAHO PE3yIbTAT NPO 30iKHICTH PO3B’sA3KY 30yPEHOI cUCTEMU
110 pO3B’sI3Ky He30ypeHOl cucTeMu y pasi KoJiu nmapaMerp 30ypeHHs MPSAMYE 0 HYJIs.
PosrasuyTo 3acTocyBaHHs BUIe3a3HAYeHNX PE3YJIbTaTIB 110 3aa4i Kol Ta piBHSIHHS
TPAHCIIOPTY.

1. INTRODUCTION

We consider Markov processes Xy which arise from small random perturbations of
dynamical systems, imposing specific conditions on the coefficients of the diffusion process,
i.e., the dissipativity and dissipativity for differences for the drift and the local Lipschitz
condition for all coefficients. These kind of processes arise in different areas of natural
sciences. The concept of dissipativity comes, in particular, from physics. Dissipative
systems are systems which absorb more energy from the external world than they
supply and such systems are contrasted with energy conserving systems like Hamiltonian
systems.The dissipativity of dynamical systems as it is known in modern system and
control community was introduced by Willems in [7].

Freidlin and Wentzell in their book [1] have developed the theory for random per-
turbations assuming that the coefficients satisfy Lipschitz condition and have a linear
growth bound. They study the random perturbations by direct probabilistic methods and
then deduce consequences concerning the corresponding problems for partial differential
equations. They consider mainly schemes of random perturbations of the form

(f=b(Xf,e), X =u (1.1)

where & (w), t > 0, is a random process on a probability space with values in R!, its
trajectories are right continuous, bounded and have at most a finite number of points of
discontinuity on every interval [0,T],T < oo. At the points of discontinuity of &, where
as a rule, (1.1) can not be satisfied, it is imposed the requirement of continuity of Xy.
Additionally € is a small number and b(z,y) = (b*(z,y),...,0"(2,y)),z € R",y € R' is
a vector field assumed to be jointly continuous in its variables. Let b(x,0) = b(z), the
random process X is considered as a result of small perturbations of the system

2y = b(xy), Ty = . (1.2)
Keywords. Diffusion process, dissipative drift, local Lipschitz condition, perturbation parameter,

Cauchy problem, transport equation.
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The equation
X;=0b(X[) +eo(X)up, — X§=uq, (1.3)
can be considered as a special case of (1.1) with b(z,y) = b(z) + o(z)y. Here y is
substituted by white noise process.
The precise meaning of (2.9) can be formulated in the language of stochastic integrals
in the following way:

t t
X¢ :;v+/ b(X;)ds+e/ o (XE)dws. (1.4)
0 0

Every solution of (1.4) is a Markov process (a diffusion process with drift vector b(x) and
diffusion matrix e?o(x)o*(z)).

Freidlin and Wentzell in their book [1] show that Xf converges to the solution z; of
the unperturbed system as € — 0, moreover they discuss the application of this result
to related partial differential equations. Particularly, they obtain results concerning the
behaviour of solutions of boundary value problems as e — 0 from the behaviour of X (w)
as € — 0. In the theory of differential equations of parabolic type, much attention is
devoted to the study of the behaviour, as e — 0, for solutions of boundary value problems
for equations of the form

€
881; = L + c(x)v® + g(x).
Here L€ is a differential operator with a small parameter at the derivatives of highest
order:

c_€ % ij 0? ~ 9
L= 2 Z ¢ (x)axixj +Zb (m)&rﬁ
3,j=1 =1
Every operator L¢ (whose coefficients are assumed to be sufficiently regular) has an
associated diffusion process X;'*. This diffusion process can be given by means of the
stochastic equation

X" =b(X") 4 e (X", X§* =, (1.5)
where o(z)o*(z) = (a¥(2)), b(x) = (b'(x),...,b"(z)). In particular, they consider the
Cauchy problem:

0ve(t, )
ot
t >0, x € R” for € > 0 and together with it the problem for the first-order operator
which is obtained for € = 0:

= L (ha) + (o)t (ha) + g(a), v (0.2) = f(), (L6

oO(t
QL) L00t0) + el )+ gla). O0.0) = ). (L7)
A special case of Cauchy equation is the so called transport equation:
Ove(t, x)

— =Lt o (0,0) = f(a),

which equals (1.6) in the case where ¢ =0 and ¢ = 0.

2. THE MODEL

Let (92, F, (Ft)tefo,1),P) be a reference filtered probability space and w be a given
I-dimensional standard Brownian motion adapted to the defined filtration (F):eqo, 17,
0 < T < 400 being a finite horizon time. Here () is a nonempty set, which is interpreted
as the space of elementary events. The second object, F, is a o-algebra of subsets of €.
Finally, P is a probability measure on the o-algebra F.

We consider

T = b(zy), X9 =, (2.8)
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and the perturbed stochastic differential equation
Xf=b(X)+eo(Xw,,  X5=u (2.9)

in R”. Here € is a small number, b(z) = (b*(z),...,0"(z)) is a vector field in R”, and
(x)) is a matrix having | columns and r rows. By a solution of this equation

o(z) = (d}
we understand a random process X; = X;(w) which satisfies the relation

t t
Xi=ux +/ b(X$)ds + e/ o(X$)dws,
0 0

with probability 1 for every ¢ € [0,7]. We usually assume that the coefficients of our
diffusion fulfil a Lipschitz condition and have a linear growth bound. Under those
conditions it is proved that the solution to the stochastic differential equation exists and
is unique. We modify the conditions on the coefficients and prove that the existence and
uniqueness result for the solution still holds (the proof of this result is based on the book
by Gihman and Skorohod [3]) in one-dimensional case. For many-dimensional case, it
was analysed in the classical book by Stroock and Varadhan [6]. We will assume that
o increases no faster than linearly and b satisfies dissipativity, the coefficients of (2.9)
satisfy a local Lipschitz condition: for some K,

<y, by) > +Z[0§(y)}2 < K21+ [yl);

for each N there exists an Ly for which
D) = b () + Y loh(y) — oi(2)] < Lyly — 2|
i i,

with |y| < N, |z] < N.

After proving the existence and uniqueness result, we will show that the zeroth
approximation for the process (2.9) with dissipative drift and locally Lipschitz coefficients
holds, i.e the solution of (2.9) X converges to the solution of (2.8) z; as € — 0. The last
approximation will be used to show that the solution to the Cauchy problem for ¢ > 0
converges to the solution for e = 0 with weaker conditions, this convergence holds also for
Transport equation.

Before stating and proving the main results, we would like to state a Gronwall-Lemma
which is often used in the proofs.

Lemma 2.1. [Gronwall] Let m(t),t € [0,T], be a nonnegative function satisfying the
relation

m(t) < C+ a/t m(s)ds, t 10,7, (2.10)
0

with C,a > 0. Then m(t) < Ce® fort € [0,T].

3. MAIN RESULTS

3.1. Existence and Uniqueness of a Solution. We aim to show that under the weaker
conditions on the coefficients that are dissipativity for the drift and the local Lipschitz
condition for all the coefficients, (2.9) has a solution and the solution is unique. This fact
can be found in [6] but we will include the proof because certain steps in this proof will
be used later. To prove the existence and uniqueness result we will need the following
theorem.

Theorem 3.1. Assume that the coefficients by(x), ba(z), o1(x), oo(x) of the equations
X5, =bi(X5,) +eoi(Xi )i,  i=1,2, (3.11)
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satisfy the Lipschitz condition and a linear growth condition, i.e., there exists a constant
K such that fort € [0,T], z,y € R", i = 1,2,

[bi(z) = bi(y)] + |oi(x) — oi(y)| < Kz -y,
[bi(2)[* + |oi (@) < K2(1+ [2f?),

and that for some N > 0 with |27| < N for all j € Ny : 0 < j <7, by(z) = ba(z), and

o1(x) = o9(x).

If X1 and X§ 5 are solutions of (3.11) with the same initial condition X§ ; = XG5 = ,
Mlz?] < oo, and 7; is the largest t for which supg<,<yo<j<, |X(]| < N, then P{r1 =
T2} =1 and

P{ sup |Xt1 Xt€,2| =0} =1
0<s<7

Proof. Define v, (t) := 1, if supg< <4 0<j<r |X€7]| < N,and 71 (t) := 0, if supp< s <t o< j<r |XE’]| >
N. Then we get

() S5 - X0 = / DILIEREL N
Fnoe [ 3 ola(X50) = X )l
— ot / Zbﬂ X¢,) - b(Xe,)]ds
+m(t /Zazl Ug,Q(XsE,l)]de
ot / Zbﬂ (XE1) — BY(XE)]ds
e [ 3 a(X50) = (Xl
— ot / Zbﬂ X¢,) — b(Xe,)lds

Fnoe [ 3 a(X50) = (Xl

Where the last step is possible, because from 71 () = 1 it follows that b{(X;l) =0 (Xs1)
and O’lj’l( $1)= Uf‘yz(X;l) for s <t. Thus

t)[ZXf XE’J < 2v(t /sz (X54) —b2(X )}ds}
ot /Z S(XE0) — 0l (X))

Taking into account that ~1(¢) = 1 implies 1 (s) = 1 for s <t we can write the v;(s)’s
inside the brackets. Taking the expectation and then using the Lipschitz condition and
the Cauchy-Schwarz inequality, we can show that for ¢ < 1 there exists a constant L such
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that

t
MO X X < Mo JRICLE AR Y
t . .
< 4Kt / Mms)[z X¢ - XPlds
0 _

_L/ My (s ZXW X53)%]ds.

Now we can use Lemma 2.1 with C' = 0. It follows that
M (i DIRGEEE | <o,
Using continuity of Xy, and Xf, we can establish

P{ sup (¢ ZXE — X7 =0} = P{ sup n(t)|X;; — X[of” =0} =1
0<t<T 0<t<T

On the interval [O,Tl] the processes Xf; and X, coincide with probability 1. Hence
P{r, > 71} = 1. Interchanging the indices 1 and 2 in the proof of the theorem, we can
show analogously that P{r; > 75} = 1. O

Theorem 3.2. Let the coefficients of (2.9) be defined and measurable for t € [0,1], and
satisfy the conditions

(1) For some K,
<ybly) >+ o5 v)]F < K21+ lyl); (3.12)

(2) for each N there exists an Ly for which

S =B+ Xlen) = o} < Lnly =+ (313)

with |y] < N, |z| < N.

Then (2.9) has a unique solution in the sense that for two solutions Xf, and Xf,

P{ sup |Xt€,1 - Xf,2| = 0} =1
0<s<T

Proof. We will first start by showing the existence and afterwards we move to the
uniqueness of the solution. Define z%; (the i-th component of the vector zy) as 2% = z°
for [2*| < N and ay = Nsign(z') for [2'] > N, biy(y) = b'(y) for [b(y)| < N and by (y) =
Nsign(b(y)) for |bi(y)| > N, o () = 0; “y ) for |o%| < N and o n(y) = Nsign(oj(y))
for [o%| > N.
By X} y we denote the solution of
Xin = bn(Xi ) + eon(Xi N, Xin =2N. (3.14)
For this equation all conditions for existence are given, because we have the growth
bound depending on N and for the coefficients we also have a global Lipschitz condition.
Let 7x be the largest value of ¢ for which supy<,<; |X§N\ < N. Let N' > N. Since
bn(y) = by (y) and on(y) = oy (y) for all [by (y)| < N, |o? x| < N, we can now apply

Theorem 3.1 to obtain X{ n = X7 ./, with probability 1 for ¢ € [0, 7x]. Hence for N >N,

P{ sup [X{y—X[\/[>0} <P{ry >T}=P{ sup |X;y|> N}
0<t<T ' 0<t<T
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If we can show that the probability on the right hand side converges to zero for N — oo,
then it will clearly follow that X§ \ converges uniformly with probability 1 to some limit
Xias N — oo.

Going to the limit in

t t
X;NZI'N-F/ bN(X )d8+€/ N(X )dws
0 0

we see that Xf is equal with probability 1 to a continuous solution of (2.9).
So to finish the proof of the existence of a solution it remains to show that

lim P{ sup | Xi Nl > N} =0. (3.15)

N—oc0 0<t<

To do this we first define the function ¢ (y) = ﬁ and then we use the Ito formula. We
obtain

MI|IX; y "9 (xn)] = MllanPp(en)]
T l

t
:M[/O 2p(en) < Xy, XS N) > +e(an) DD ok (Xe ) ]

k=1 i=1
<atfuton) [ 2L+ Ul K2+ X ]
<P(an) (2Kt + K1) + (2K + €K?) /Ot My () |X: n[?]dt

We can use Lemma 2.1 to get
M (en) [ Xin ] < W(@n) QK+ K7 + oy Py (ay)| O

Which means we have

M) sup |XinP] < Co

0<t<T

where C] is independent of V.
‘We can moreover write

P{ sup |X{n|>N}=P{y(xn) sup |[X{y|* > N?¢(an)}
0<t<T 0<t<T
< P{¢(xn) sup |X{ n[* >IN} + P{y(xn) < 0}
0<t<T

Ch

< 53z + Plvlan) <3},

where the last inequality follows from the Chebychev inequality. Consequently,
lim P{ sup |X;y|> N} < P{¢(zn) <}
N—oo 0<t<T ’
Since 4 is an arbitrary positive number and P{¢(zx) = 0} = 0, (3.15) results from the

preceding relation. This completes the proof of the existence of a solution to (2.9).
Next we want to prove the uniqueness of the solution. Let Xf, and Xi, be two

solutions of (2.9). Denoting by ¢(t) the variable equal to 1 if supy<,<; |X§i| < N and
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SUPp<s<t \X§;| < N and equal to 0 otherwise. Using our second condition we can write
MIXE, — X5, P(t) < 2M[p / DI ) ~ B )
+ 2M[6(t)( / S0t (X2 ) — 0 (X ) duws)?)
i,
t
< 2tM( / b(s) 3 W (XE,) — b (XE)[2ds)]
t . .
oM / 6(s) Z 0 (XE ) — 0 (X ,)[2ds)]

(2T+2L2/M B(s)| XS, — X$olPds)

Where we first used that a® + > > 2ab, then the Cauchy-Schwarz inequality and
properties of the Ito integral and afterwards the local Lipschitz continuity. Then we need
to use Lemma 2.1 with C' = 0 to get M|X{; — X ,[*¢(t) = 0, which means

P{X{, # X 2}<P{ sup \Xfl\>N}+P{ sup IX 2l > N}

This holds, since ¢(t) is zero for supy<,«; |X§7’i| > N or Supg<,<y |X;’;| > N. From
continuity of X7, and X{, it follows that they are bounded. Hence the probability on the
right-hand side of this inequality tend to zero as N — oo, i.e., for all t € [0,T]: P{X{; =
X{,} = 1 from which the uniqueness follows in the sense that P{supy<;<p |X{; — t12| =
0}=1.

OJ

3.2. Zeroth Order Approximation for Dissipative Case. Having proved existence
and uniqueness of a solution to (2.9) with our conditions on the coefficients, we want to
prove convergence of the solution X§ of (2.9) to a solution z; of (2.8) as € — 0 under
dissipativity and dissipativity for differences for the drift vector and the local Lipschitz
condition for all the coeflicients.

Theorem 3.3. Assume that the coefficients of (2.9) satisfy a local Lipschitz condition,
o increases no faster than linearly and b satisfies dissipativity and dissipativity for the
differences:

(1) For some K,

<y, b(y) > +Z[a§<y>12 < K21+ |yP); (3.16)

<y—zb(y) —b(z) > < K*(1+ [y — 2); (3.17)
(2) for each N there exists an Ly for which

S Ik \+Z 0 (y) = 0%()] < Livly — 2] (3.18)

with ly| < N, |z] < N.
Then for allt > 0 and § > 0 we have:
(1) MIX{ -] < alt), and
(2) lime_yo P{maxo<s<¢ | XS — 25| > 6} =0,

where a(t) is a monotone increasing function, which is expressed in terms of |z| and K.
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Proof. We start by showing that M|Xf|? is bounded uniformly in € € [0, 1]. To show that
we first apply Ito’s formula to get

t
(14X = (1+ |=)?) ZZ /\Xf ek (X )dw§+/[2<xg,b(xg)>
0

k=11i=1

VD WBBEIeD

k=114,j=1,i=j

FeY Y oo
k=114,j=1,i#j

Applying the mathematical expectation and adding (1 + |x|?) on both sides we obtain:
t t
1+ M|XF)?=1+|z|? +2/ M < X5, 0(X5) > d8+€2/ MZ[O’;(X
0 —

Using the Cauchy-Schwarz inequality, and that ¢ in (2.9) increases no faster than
linearly and the dissipativity for b, the last relation implies the estimate

t t
1+M|X§|2:1+|x\2+2/ M<X§,b(X§)>ds+62/ MY [oh(X
0 T

t t
< 1+|x\2+2/ M[K2(1+|X§|2)]ds+62/ MIK?(14|X¢)?)]ds
0 0

t
< 1+|x\2+(2K2+e2K2)/ (1+ M|XE|]?)ds
0

Next we use Lemma 2.1 and choose m(t) = 1+ M|X{|?, C = 1+ |z|? and o =
(2K? + €2K?). By doing this we obtain

14+ M|X{|? < (14 |z]?) exp[(2K? + 2 K?)t]. (3.19)
From the inequality we proved it follows that M|X{|? is bounded uniformly in € € [0, 1].
In the next step we want to use our result to prove that M|X¢ — x| < €2a(t). To do this
we work in a very similar way.
We apply the Ito formula to the function | X§ — x|, which works the same way as it
did with 1 + | X7|, just that the starting term vanishes, because X§ = = = zo. Next we
apply the mathematical expectation on both sides of the equality to get

t t
M|X§—xt|2:2/ M < X¢— 2y, b(X) — b(zs) >ds+62/ MY (o (XE)ds
0 .

In the proof of the existence we proved (3.15). Since X[ 5 converges to Xf as N — 00
we also know that 7
lim P{ sup | XS >N}=0 (3.20)
N —o00 0<s<
and
lim P{ sup |xs| > N} =0. (3.21)

N—oo  "p<s<

From this it follows that there exists an N such that
€2

P{ sup |X{|>N}<— (3.22)
0<s<T
and )
P{ sup |z >N} < . (3.23)

0<s<T 2
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In the following calculations we first split up our mathematical expectation into two
different cases, then we use the Cauchy-Schwarz inequality and (3.16). Afterwards we

apply the local Lipschitz condition (3.18) and dissipativity for the differences for b (3.17).
Then we estimate the probabilities we used in the inequality

M|XE — a4 *2/ M < X;— xg,b(X)fb(:L'g)>ds+62/ MZ (XO))?ds

< P{max{ sup |X¢|, sup |zs|} < N}
0<s<T 0<s<T

0<s<

t
M[\/|X;—xs2Z[bi<X;>—bi(xsn?ds\max{ sup X, sup [z} < ]

+ P{max{ sup |X¢|, sup |zs|} > N}
0<s<T 0<s<T

¢
2/ M[< XS — 25, b(XS) — b(zs) > | max{ Sup | XS], sup |zs|} > Nlds
0 0<s< <s<T

t
+62K2/ (1+ M|XE|?)ds
0

t
< P{max{ sup |X¢|, sup |zs|} SN}Q/ M\/|X§—xs|2L%\,|X§—xs|2ds
0<s<T 0<s<T 0

t
+ P{max{ sup |Xg|, sup |zs|} > N}2/ K*(1+ M|XE — x4|*)ds
0<s<T 0

0<s<T

t
+62K2/ (1+ M|XE|?)ds

0

t
§2LN/ M|XE — x,)%ds

0

i
+ (P{ sup |X¢| > N}+P{ sup |z >N})[2K2t+2K2/ M|XE — x4)%ds)
0<s<T 0<s<T 0

t
JFEQKQ/ (1+ M|XE|?)ds

0

t t
§2LN/ M|X§—m5\2d3+e22K2t+622K2/ M|XE — x|%ds

0 0

t
JFEQKZ/ (1+ M|XE|?)ds

0

t t
< (2LN+622K2)/ M|X§—xs|2ds+e22K2t+62K2/ (1+ M|XE|*)ds
0 0

We use Lemma 2.1 again and this time we choose m(t) = M|Xf — 24|?, a = (2Ly +
€22K?), C = 22K?*t + 2K? fot(l + M|X¢|?)ds. By this we get

t
MI|XE — > < 6(2LN+622K2)t[622K2t+62K2/ (1+ M|XE|?)ds]
0

¢
< eCLN+E2KN)E 29 2y 4 ((CLN+EP2K?)E 2 2 / (14 |z|?) exp[(2K + 2 K?)s]ds
0

t
< 22K 24eRIN RN | (22, (2L 2KT) 1+ || )/ exp[(2K + 2 K?)s]ds
0

< éa(t).
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Where we used the result (3.19) and a(t) is chosen such that it is a monotone increasing
function.

Now we want to prove the second assertion of the theorem. We will now use
the Chebyshev inequality that says that P{{(w) > a} < %S) By setting &(w) =
maxo<s<t | XS — x|, a =46, f(z)=2? and applying the first assertion of the theorem we
obtain

Mmaxo<oc [ XS — 2] _ €®a(t)

P{Or?ag | XS —ag| >0} < 5 <=5 (3.24)
Taking limits on both sides in (3.24) , we get
c®a(t)
_ < = 0.
ll_)ﬂ% P{Orgai( | XS —xs| >0} < hm 52 0 O

3.3. Parabolic Differential equations with a Small Parameter: Cauchy Prob-
lem, Transport Equation. We aim to obtain results concerning the behavior of so-
lutions of the Cauchy problem as e — 0 from the behavior of Xf(w) as ¢ — 0. In the
preceding section we have obtained a result concerning the the behavior of solutions
X;(w) as € — 0, which will be used in the present section. We consider the Cauchy
problem

Ove(t, x)
ot
t >0, x € R" for € > 0 and together with it the problem for the first-order operator
which is obtained for € = 0,
o0 (t, x)
ot

Here L€ is a differential operator with a small parameter at the derivatives of highest
order,

= Lv(t,x) + c(x)ve(t, x) + g(x), ve(0,2) = f(x), (3.25)
= L%°(t, x) + c(2)v°(t, ) + g(x), 02(0,z) = f(x). (3.26)

2 T
€
_LE = — a bl
2 Z 63: xd Z (9:#
3,7=1

Every operator L¢ (whose coefficients are assumed to be sufficiently regular) has an
associated diffusion process X;'*. This diffusion process can be given by means of the
stochastic equation

X" =b(X0") 4+ eo(XM )y,  X§U ==, (3.27)
where o(z)o*(z) = (a¥(z)), b(z) = (b (z),...,b"(x)).
We assume that the following conditions are satisfied:

(1) the function ¢(z) is uniformly continuous and bounded for x € R";

(2) the coefficients of L! satisfy a local Lipschitz condition, b satisfies dissipativity
and dissipativity for the differences;

(3) k230N < 300 -y @Y (x)Aid; < k* 3D A7 for any real Ap, Ag,..., A and z € R7,
where k2 is a positive constant.

Under these conditions, solutions to problems (3.25) and (3.26) exist and are unique.
Having these conditions we obtain the following result.

Theorem 3.4. If conditions (1)—(3) are satisfied, then the limit lir% ve(t,z) = 00t x)
e—

exists for every bounded continuous initial function f(x), x € R". The function v°(t, ) is
a solution of problem (3.26).



DIFFUSION APPROXIMATION FOR TRANSPORT EQUATIONS 11

Proof. If condition (3) is satisfied, then there exists a matrix o(x) with entries satistying
a local Lipschitz condition for which o(z)o*(z) = (a*(z)). The solution of (3.25) can be
represented in the following way [1, Chap. 1, Sec. 5]:

ve(t, x) = M[F(XE™) exp / (X5 s} ]+ M] / 9(X%) expf / (XS du)ds]. (3.28)

This remains true for the changed conditions, because of the uniqueness of the solution.

From Theorem 3.3 it follows that X&% converges to X% in probability on the line
segment [0,t] as ¢ — 0. Taking into account that there is a bounded continuous func-
tional of X&*(w) under the sign of mathematical expectation in (3.29), by the Lebesgue
dominated convergence theorem, which we can use because the functional is bounded, we
obtain

liyno“ (1, ) = lim MIF(XE™) exp /O X5 ds}] + Tl /0 g(X57) expf /0 (X5 du) ds]
t t s
= Ml FOXexp | e(Xe)ds] + Mlim [ o(Xeexp{ [ e(Xg)dupds]

= 02y ox tc 0.2 ds t 0,2) ox sc 0.2 du ) ds.
— f(x0) p{/o (X >d}+/og<xs ) p{/o (X0%)du}d

The function on the right side of the equality is a solution of (3.26). This finishes the
proof. O

The special case is where ¢(x) = g(x) = 0, which gives us a Transport equation,

ove(t
D) ey, o 0) = ).
A solution of the transport equation can be written in the following form:

ve(t, @) = M[f(XP0)]. (3.29)
As in the case of the Cauchy problem, passing to the limit for € — 0 we get lin% ve(t,z) =
€E—>
v9(t, 2) where v°(¢, ) is a solution of
0
t
LD o), 00,2) = f),
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