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Abstract. Let K be a field of characteristic zero and K[x, y] the polynomial ring.

Denote by W2(K) the Lie algebra of all K-derivations of K[x, y]. Centralizers of elements

and maximal abelian subalgebras of the algebra W2(K) are studied. The structure of a

centralizer CW2
(D) depends on the kerD in the field of rational functions K(x, y) (the

derivation D can be naturally extended on K(x, y)). In particular, if kerD in K(x, y)

coincides with K or does not contain nonconstant polynomials, then CW2
(D) is of finite

dimension over K.

Introduction

Let K be an algebraically closed field of characteristic zero and K[x, y] be the poly-

nomial algebra over K. The Lie algebra W2 = W2(K) of all K-derivations of K[x, y] was

studied by many authors (its finite dimensional subalgebras were described by S. Lie in

case K = C [2], see also [3], [4]). The structure of subalgebras of the Lie algebra W2(K)

is of great interest because its elements can be considered as vector fields on K2 with

polynomial coefficients. In this paper, we give a characterization of centralizers of ele-

ments in the Lie algebra W2(K). Given a derivation D ∈ W2(K) one can consider its

extension on the field K(x, y) of rational functions by the rule D(f
g
) = D(f)g−fD(g)

g2
and

the subfield of constants ker D. We prove (Theorem 1) that CW2(D) is one-dimensional

or two-dimensional (over K) in case kerD = K. If kerD contains a nonconstant polyno-

mial then CW2(D) is infinite dimensional, its structure is described. The last case when

kerD contains a rational function, but not a nonconstant polynomial yields against finite

dimensional centralizers but of more complicated structure. Using these results we give a

characterization of maximal abelian subalgebras of W2(K) (Theorem 2).

We use standard notations, the ground field K is algebraically closed of characteristic

zero. A nonzero derivation D will be called reduced if from any equality D = hD1, h ∈
K[x, y], D1 ∈ W2(K) it follows that h ∈ K?. It is obvious that every derivation D ∈ W2(K)

can be written in the form D = hD0 where h ∈ K[x, y] andD0 is reduced. The field K(x, y)

will be denoted by R.
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Every polynomial p ∈ K[x, y] defines a derivation Dp ∈ W2(K) (it is called a Jacobi

derivation) by the rule: Dp(h) = detJ(p, h), where J(p, h) is the Jacobi matrix of the

polynomials p, h If p is irreducible we denote by δp a reduced derivation corresponding

to Dp. Analogously every irreducible fraction p/q ∈ K(x, y) defines a Jacobi derivation

Dp,q = qDp − pDq ∈ W2(K), a reduced derivation corresponding to the last one will be

denoted by δp,q.

1. On centralizers of elements in W2(K)

Let D be a nonzero derivation of K[x, y]. It is obvious that D satisfies one of the

following conditions: (1) kerD in K(x, y) coincides with K. (2) kerD in K(x, y) contains

a nonconstant polynomial. (3) kerD in K(x, y) is different from K and does not contain

any nonconstant polynomial. We consider these cases in Lemmas 2, 4 and 5.

The next statement can be directly proved.

Lemma 1. Let ϕ(t) = u(t)/v(t) ∈ K(t) be an irreducible fraction, deg u = m, deg v =

n. If the polynomials p, q ∈ K[x, y] are algebraically independent over K and irreducible,

then the rational function ϕ(p/q) from K(x, y) can be written in the form ϕ(p/q) = u/v,

where u, v are homogeneous polynomials in p, q of the same degree max(m,n). These

polynomials can be chosen to be coprime.

Lemma 2. Let D ∈ W2(K) be a derivation such that kerD in K(x, y) is equal to K.

Then the centralizer C = CW2(D) coincides with KD, or C = KD+KD1 for a derivation

D1 such that D,D1 are linearly independent over K(x, y).

Proof. Let first C = CW2(D) have rank 1 over K(x, y). If dimKC = 1, then C = KD
and all is done. Let dimKC > 1 and D1 be such an element of C that D,D1 are linearly

independent over K. Since rkRC = 1, there exist polynomials f, g ∈ K[x, y] such that

fD+gD1 = 0 (at least one of the polynomials is nonconstant). Then there exist a reduced

derivation D0 and polynomials α, β ∈ K[x, y] such that D = αD0, D1 = βD0. Since D,D1

are linearly independent over K, at least one of the polynomials α, β is nonconstant, and

α/β is a nonconstant rational function. Further,

0 = [D,D1] = [αD0, βD0] = (αD0(β)−D0(α)β)D

and therefore αD0(β) − D0(α)β = 0. But then D(α
β
) = 0 and since α

β
/∈ K we get a

contradiction to our assumption on D. Therefore dimKC = 1 and C = CW2(D) = KD.
Let now C be of rank 2 over R = K(x, y). Then there exists an element D1 ∈ C such

that D1, D are linearly independent over K(x, y). Let D2 be an arbitrary element of C,

write D2 = uD + vD1 for some u, v ∈ K(x, y). We have

[D,D2] = D(u)D +D(v)D1 = 0,



26 Ie. O. Makedonskiy, A. P. Petravchuk, V. V. Stepukh

and taking into account the linear independence of D,D1 over K(x, y) we get D(u) = 0

and D(v) = 0. Since kerD = K (in K(x, y)) we see that u, v ∈ K and D2 ∈ KD+KD1 i.e

C ⊆ KD + KD1. As it holds obviously KD + KD1 ⊆ C we obtain C = KD + KD1. �

Lemma 3. ([1]) Let D ∈ W2(K) be a derivation such that kerD in K(x, y) contains

a nonconstant polynomial. Then D = hδp, where h ∈ K[x, y], δp is a reduced derivation

corresponding to the Jacobi derivation Dp for an irreducible polynomial p = p(x, y) ∈
K[x, y].

Definition 1. (see also [1]). (1) Let p = p(x, y) ∈ K[x, y] be an irreducible polynomial.

A polynomial f = f(x, y) will be called p-free if f is not divisible by any polynomial in

p of positive degree. Every polynomial g ∈ K[x, y] can be written in the form g = g0g1,

where g0 is a p-free polynomial and g1 = g1(p) is a polynomial of p (may be g1 = const).

The degree of the polynomial g1(p) in p will be called the p-degree of g and denoted by

degpg.

(2) Let p and q be algebraically independent irreducible polynomials from the ring

K[x, y]. A polynomial f(x, y) ∈ K[x, y] will be called p-q-free if f is not divisible by any

homogeneous polynomial in p and q of positive degree. As earlier one can write every

polynomial g ∈ K[x, y] in the form g0g1, where g0 is a p-q-free polynomial and g1 = h(p, q)

for some homogeneous polynomial h(s, t) ∈ K[s, t]. The (total) degree of h in s, t will be

called the p-q-degree of g and denoted by degp−qg.

Lemma 4. Let D ∈ W2(K) be a derivation such that kerD in K(x, y) contains a

nonconstant polynomial. Then D = hf(p)δp where p is an irreducible polynomial from

kerD, h is a p-free polynomial and δp is a reduced derivation corresponding to the Jacobi

derivation Dp. The centralizer CW2(D) is one of the following algebras:

(1) CW2(D) = K[p]hδp

(2) CW2(D) = K[p]hδp + K[p]D1

for some D1 ∈ CW2(D) such that D1, D are linearly independent over K(x, y).

Proof. Using Lemma 3 we can write the derivation D in the form D = gδp, where δp

is a reduced derivation corresponding to Dp. We write the polynomial g = g(x, y) in the

form g = hf(p), where f(p) is a polynomial of p (may be f(p) = const) and h = h(x, y)

is a p-free polynomial. Let first rkRC = 1. Then any derivation D1 ∈ CW2(D) is of the

form D1 = g1δp, for some polynomial g1 ∈ K[x, y]. It follows from the equality

0 = [D,D1] = [hf(p)δp, g1δp] = (f(p)δp(h)g − hf(p)δp(g1))δp

that δp(h)g1 − hδp(g1) = 0 and therefore δp(g1/h) = 0. But then g1/h = ϕ(p) for some

rational function ϕ(t) ∈ K(t) (since ker δp = K(p) in K(x, y)). Thus g1/h = u(p)/v(p)

for some polynomials u(t), v(t) ∈ K[t] (these polynomials can be chosen coprime). From
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the last equality we get g1v(p) = hu(p). If the polynomial v(t) is nonconstant, then

taking into account the condition K = K we see that every divisor of v(p) of the form

p − λi, λi ∈ K divides the polynomial h. But the latter is impossible because of choice

of h and therefore v(p) = const. Denote u1(t) = u(t)/v ∈ K[t]. We get g1 = hu1(p) and

D1 = g1δp = hu1(p)δp ∈ K[p]hδp. Since the element D1 was chosen arbitrarily we obtain

CW2(D) ⊆ K[p]hδp. It is obvious that K[p]hδp ⊆ CW2(D) and therefore CW2(D) = K[p]hδp.

The centralizer CW2(D) is of type 1.

Let now CW2(D) be of rank 2 over R = K(x, y). Note that for any derivation D1 ∈
CW2(D) satisfying the condition DD1 = D1D it follows that D1(p) ∈ kerD. Since

kerD = K[p] (in K(x, y)), then D1(p) = f1(p) for some polynomial f1(t) ∈ K[t]. Take an

element D1 ∈ CW2(D) such that the polynomial f1(t) has the possible lowest degree. Take

now any derivation D2 ∈ CW2(D) and let D2(p) = f2(p). Let us show that the polynomial

f2(t) is divisible by f1(t). Really, let this is not the case and for some f2(t) ∈ K[t]

the greatest common divisor gcd(f2, f1) = g(t) be of degree less than min(degf1, degf2).

Then there exist polynomials a(t), b(t) ∈ K[t] such that g(t) = a(t)f1(t) + b(t)f2(t).

The derivation D3 = a(p)D1 + b(p)D2 satisfies obviously the condition [D,D3] = 0 and

D3(p) = g(p). The latter contradicts to the choice of the derivation D1. Therefore f2(t)

is divisible by f1(t). Set µ(t) = f2(t)/f1(t). It is easy to see that

(D2 − µ(p)D1)(p) = D2(p)− µ(p)D1(p) = f2(p)− µ(p)f1(p) = 0.

The latter means in view of Lemma 1 that D2 − µ(p)D1 = gδp for some polynomial

g ∈ K[x, y]. Since D2 − µ(p)D1 ∈ C, it follows from above proven that g = u(p)h for

some u(p) ∈ K[p]. Thus, D2 ∈ K[p]D1 + K[p]hδp. The inverse inclusion holds obviously

and therefore CW2(D) = K[p]D1 + K[p]hδp. �

Lemma 5. Let D ∈ W2(K) be such a derivation that kerD 6= K in K(x, y) and kerD

does not contain any nonconstant polynomial. Then D = hf(p, q)δp,q, where p, q are

algebraically independent over K irreducible polynomials such that kerD = K(p
q
), f(p, q)

is a homogeneous polynomial in p and q of degree m ≥ 0, the polynomial h is p-q-free and

δp,q is a reduced derivation corresponding to qDp − pDq. The centralizer C = CW2(D) is

one of the following algebras:

(1) C = K[p, q]mhδp,q, where K[p, q]m is the space of all homogeneous polynomials in

p, q of degree m = degp−qf, in particular dimKC = m+ 1.

(2) C = (K(p
q
)D + K(p

q
)D1) ∩W2(K), where D1 ∈ C, such that D,D1 are linearly

independent over K(x, y). The subalgebra C is finite dimensional over K, and if

D = P ∂
∂x

+ Q ∂
∂y
, D1 = P1

∂
∂x

+ Q1
∂
∂y
, ∆ = PQ1 − P1Q, and degp−q∆ = s,

then dimKC ≤ m+ s+ 2, where m = degp−qf.
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Proof. Since kerD 6= K, the subfield kerD contains a nonconstant rational function.

Note that kerD in K(x, y) is algebraically closed in K(x, y), so tr.degK kerD = 1. The

Gordan’s Theorem (see [6], Th. 3) yields now that kerD = K(p
q
) for a nonconstant rational

function p/q. The polynomials p and q can be chosen to be irreducible (see, for example

[5]). It can be easily shown that D = hf(p, q)δp,q where δp,q is a reduced derivation

correspond to qDp − pDq, h is p-q-free and f(p, q) is a homogeneous polynomial in p, q.

Set m = degp−qf.

Let first C = CW2(D) be of rank 1 over K(x, y). Take any element D1 ∈ C. Then

D1 = d1δp,q for some polynomial d1, the polynomial d1 can be written in the form d1 =

f1h1, where f1 = f1(p, q) is a homogeneous polynomial in p, q and h1 is p-q-free. The

derivations D and D1 satisfy the condition

[D,D1] = [hf(p, q)δp,q, h1f1δp,q] = 0.

But then δp,q(hf)h1f1 − hfδp,q(h1f1) = 0 and therefore δp,q(hf/h1f1) = 0. The latter

means that hf
h1f1
∈ kerD = K(p

q
) and hf/h1f1 = u(p, q)/v(p, q) for some homogeneous (in

p, q) polynomials u, v of the same degree (see Lemma 1). We can choose these polynomials

to be coprime as polynomials in p, q. But then they are coprime as polynomials in x, y

because p− λiq and p− λjq are coprime provided that λi 6= λj.

It follows from these considerations that hfv = h1f1u with homogeneous polynomials

fv, f1u in p, q and p-q-free polynomials h, h1. Since the decomposition into product of

a p-q-free polynomial and a homogeneous in p, q polynomial is unique up to nonzero

scalar multiple it follows that h1 = hc for some c ∈ K?. As degp−qu = degp−qv by the

choice of these polynomials we see that degp−qf1 = degp−qf = m. Then D1 = f1h1δp,q ∈
K[p, q]mhδp,q where K[p, q]m is the vector space of all homogeneous polynomials in p, q

of degree m in p, q. One can easily show that K[p, q]mhδp,q ⊆ C and therefore C =

K[p, q]mhδp,q. The centralizer is of type 1 of Lemma.

Let now the rank CW2(D) be equal to 2 (over K(x, y)). Write D = P ∂
∂x

+Q ∂
∂y
, D1 =

P1
∂
∂x

+Q1
∂
∂y

with P,Q, P1, Q1 ∈ K[x, y] and let ∆1 = PQ1−P1Q. Further, take an another

element D2 ∈ C such that D,D2 are also linearly independent over K(x, y). Then D2 =

αD + βD1 for some α, β ∈ K(x, y). It follows from the relations 0 = [D,D2] = [D,αD +

βD1] = D(α)D + D(β)D1 that D(α) = D(β) = 0 (because of linearly independence of

D,D1). But then α, β ∈ K(p
q
) (recall that kerD in K(x, y) coincides with K(p

q
)) and

therefore C ⊆ (K(p
q
)D + K(p

q
)D1) ∩W2(K). The inverse to this inclusion also holds, so

we have C = (K(p
q
)D +K(p

q
)D1) ∩W2(K).

Write now the derivation D2 in the form D2 = P2
∂
∂x

+ Q2
∂
∂y

with P2, Q2 ∈ K[x, y]

and denote ∆2 = PQ2 − P2Q. Since P2 = αP + βP1 and Q2 = αQ + βQ1, we have

∆2 = β∆1. The rational function β ∈ K(p/q) can be written in the form β = u/v, where

u, v are homogeneous polynomials in p, q and degp−qu = degp−qv (see Lemma 1). Then we
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obtain from the equality ∆2 = β∆1 and condition ∆1,∆2 ∈ K[x, y] that the polynomials

∆1 and ∆2 have the same p-q-degree. Besides, these polynomials have the same p-q-free

part up to nonzero scalar multipliers. Let degp−q∆1 = s. Note that the vector space

K[p, q]s of all homogeneous polynomials of degree s in p, q has dimension s + 1 over K.
The centralizer C = CW2(D) has a K-subspace C0 consisting of all derivations linearly

dependent with D. By the above proven the subspace C0 is of dimension m over K where m

is the p-q-degree of the polynomial f from the decomposition D = hfδp,q. Take arbitrary

derivations T1, . . . , Ts+2 from C, write down Ti = Pi
∂
∂x

+Qi
∂
∂y

, i = 1, . . . , s+2, and denote

∆i = PQi − PiQ. Since the determinantes ∆i have the same p-q-free part (up to nonzero

scalar multipliers) and dimK K[p, q]s = s + 1, there exist elements c1, . . . , cs+2 ∈ K such

that c1∆1 + · · ·+ cs+2∆s+2 = 0 and at least one of ci is nonzero. Consider the derivation

T = c1T1 + · · ·+cs+2Ts+2 = U ∂
∂x

+V ∂
∂y
, U, V ∈ K[x, y] from the centralizer C. It is obvious

that PV − QU = 0 and this equality implies that D and T are linearly dependent over

K(x, y), i.e. T ∈ C0. Therefore dimC/C0 ≤ s + 1. But then the dimension of C over K
does not exceed (m+ 1) + (s+ 1) = m+ s+ 2. �

Theorem 1. Let D be an arbitrary nonzero element of W2(K). Then the centralizer

C = CW2(D) is a subalgebra of one of the following types:

(1) C = KD, if kerD in K(x, y) coincides with K.
(2) C = KD + KD1, if kerD in K(x, y) coincides with K and there exists D1 such

that [D,D1] = 0 and D,D1 are linearly independent over K(x, y).

(3) C = K[p]hδp, if kerD in K(x, y) contains a nonconstant polynomial, this polyno-

mial p can be chosen irreducible, D = hfδp, where f is a polynomial in p, h is

p-free and δp is a reduced derivation corresponding to Dp.

(4) C = K[p, q]mhδp,q, if kerD contains a nonconstant rational function p/q and does

not contain any nonconstant polynomial, kerD = K(p
q
), D = hfδp,q, where f is

a homogeneous polynomial in , q of degree m, h is a p-q-free polynomial and δp,q

is a reduced derivation corresponding to qDp − pDq.

(5) C = (K(p
q
)D + K(p

q
)D1) ∩ W2(K), where D satisfies all the conditions of the

previous part of Theorem, D and D1 are linearly independent over K(x, y)

[D1, D] = 0. If D = P ∂
∂x

+ Q ∂
∂y
, D1 = P1

∂
∂x

+ Q1
∂
∂y
, and ∆ = PQ1 − P1Q

then dimKC ≤ m+ s+ 2, where m as in part 4 of Theorem and s = degp−q∆.

Proof. See Lemmas 2, 4 and 5. �

Corollary 1. If D ∈ W2(K) and CW2(D) is infinite dimensional over K, then kerD

contains a nonconstant polynomial which can be chosen to be irreducible.

Theorem 2. Let L be a maximal abelian subalgebra of the Lie algebra W2(K). Then

L is one of the following algebras:
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(1) One-dimensional of the form KD where D ∈ W2(K and kerD in K(x, y) coincides

with K.
(2) Two-dimensional of the form KD + KD1 where D,D1 are linearly independent

over K(x, y).

(3) Finite dimensional of the form K[p, q]mhδp,q, where h ∈ K[x, y], K[p, q]m is the

vector space of all homogeneous in p, q polynomials of degree m (see Theorem 1).

(4) Infinite dimensional of the form K[p]hδp, where h ∈ K[x, y], K[p] is the vector

space of polynomials in p (see Theorem 1).

Proof. Let L be a maximal abelian subalgebra of W2(K). If rkK(x,y)L = 2 then L

contains elements D1, D2 which form a basis of W2(K) over K(x, y) (as a vector space).

But then every element D of L can be written in the form D = α1D1 + α2D2 for some

α1, α2 ∈ K(x, y). Since [D,D1] = [D,D2] = 0 we have that D1(αi) = 0, D2(αi) = 0, i =

1, 2. The latter means that α1, α2 ∈ K and therefore L = KD1 + KD2. The Lie algebra

L is of type 2 of this Theorem.

Let now rkK(x,y)L = 1. Take any nonzero element D ∈ L. If dimK L = ∞, then

L ⊆ CW2(D) and CW2(D) = K[p]hδp by Theorem 1. Since CW2(D) is abelian we see that

L = CW2(D) and L is of type 4. If dimK L <∞ then one can analogously show that L is

of type 1 or 3. �
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