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Анотацiя. В данiй роботi розглядаються диференцiальнi градуйованi категорiї,
асоцiйованi з градуйованими графами, якi мають додатну квадратичну форму. Для
таких задач розв’язується класифiкацiйна задача, а саме, наводиться алгоритм пе-
ретворень i показується, що задачi з розглядуваного класу можуть бути перетворенi
до задач, граф яких є колчаном типу Динкiна.

Abstract. This work concerns with differential graded categories associated with

graded graphs with positive quadratic form. We solve the classification problem for

such differential graded categories. Those problems can be transformed to the problems

with graded graph, which is a quiver of Dynkin type. The algorithm is built.

Preliminaries

The reduction algorithm of linear categories and other structures is widely used in the

representation theory. This approach allows to study representations inductively, reducing

the corresponding categories step by step ([1]). On the other hand, the important charac-

teristic of represented structure is the induced quadratic form whose roots correspond to

the indecomposable representations. The theory of quadratic forms is well known ([2], [3],

[4]). We give the simultaneous reduction algorithm of transformation of the differential

graded category with special properties and the underlined unit quadratic form to the

canonical form.

1. Differential graded categories and directed graded graph

The k-linear category U is called graded if U(i, j) = ⊕q∈ZUq(i, j) is a sum of finite

dimensional vector spaces Uq(i, j) = deg−1(q), i, j ∈ ObU . The graded k-category U is

called the differential graded category or dgc if there is the differential d : U → U which

maps d : Uq(i, j)→ Uq+1(i, j), q ∈ Z, i, j ∈ ObU , and the following properties hold:

(1) d(1i) = 0, i ∈ ObU ;
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(2) Leibnitz rule: d(x1 . . . xi−1xi . . . xk) =

=
∑k

i=1x̂1 . . . x̂i−1d(xi)xi+1 . . . xk =
∑k

i=1(−1)|x1|x1 . . . (−1)|xi|xixi+1 . . . xk;

(3) d2 = 0.

Let Γ = (Γ0,Γ1, s, t) be a directed graph with Γ0 be a set of vertices and Γ1 be a

set of edges (arrows) equipped with two maps s : Γ1 → Γ0 and t : Γ1 → Γ0 that return

starting and end (terminating) vertex of the edge correspondingly. Two vertices i, j ∈ Γ0

are called incident if Γ1(i, j)∪ Γ1(j, i) 6= ∅. The graph Γ = (Γ0,Γ1, s, t) is called graded

(or Z-graded) if there is the map deg : Γ1 → Z, such that

Γq1 =
⊔

i,j∈Γ0

Γq1(i, j) = deg−1(q), Γ1 =
⊔
q∈Z

Γq1.

We denote |x| = deg x and x̂ = (−1)|x|x. The graph Γ is called 0-quiver or quiver if

Γq1(i, j) = ∅ whenever q 6= 0.

Let k be an algebraically closed field. We consider kΓ the k-linear path category

of the graded graph Γ which is freely generated over k by all the pathes on Γ. We

denote coeffx1...xkx = κ, κ ∈ k whenever x = κx1 . . . xk + . . . is a basis decomposition.

The category kΓ inherits the degree (graduation) from Γ such that deg x1x2 . . . xk =∑k
i=1 deg xi.

The full subgraph ΓS, S ⊂ Γ0 is called closed contour if there is an ordering S =

{i1, . . . , ik} such that |Γ1(ij, ij+1)∪Γ1(ij+1, ij)| > 0, j = 1, . . . , k−1, and |Γ1(i1, ik)∪
Γ1(ik, i1)| > 0. The closed contour ΓS, S = {i1, . . . , ik} ⊂ Γ0 is called clear if Γ1(is, it)∪
Γ1(it, is) = ∅, |s − t| > 1 (mod k). The closed contour ΓS is called oriented cycle if

|Γ1(ij, ij+1)| > 0, j = 1, . . . , k− 1, and |Γ1(ik, i1)| > 0. The closed contour ΓS is called

detour contour if |Γ1(ij, ij+1)| > 0, j = 1, . . . , k − 1, and |Γ1(i1, ik)| > 0. Denote xij

the edge from the vertice starting in i and ending in j. Detour contour ΓS is called active

(or contour of differenrial type) if κxi1i2 . . . xik−1ik is a summand of differential of the

edge xi1ik . The edge a ∈ Γ1(i, j) is called deep if there are no other pathes on Γ from i

to j. The edge a ∈ Γ1(i, j) is called minimal if d(a) = 0.

Given a dgc U with |ObU| <∞, define the underlined directed graded graph Γ = Γ(U)

such that Γ0 = ObU , and Γ1(i, j) is a basis of (U/U⊗2)(i, j), i, j ∈ Γ0 with the induced

graduation. The differential d induces the map d : Γq1 → kΓq+1(i, j), i, j ∈ Γ0, q ∈ Z.
which is extended on the whole kΓ by Leibnitz rule.

The graph Γ which is correspondent to the finite dimensional differential graded cate-

gory is finite. The graph Γ is called correctly defined if it has no oriented cycles and it

does not have multiple edges. In this case kΓ is finitely generated.
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2. Quadratic form

We associate with correctly defined graded graph Γ = (Γ0,Γ1, s, t) the undirected

bigraph B = B(Γ) = (Γ0,B1) in the following way. We denote by B1 the set of pairs {i, j}
of vertices from Γ0 that are incident in Γ together with correspondent to Γ graduation

deg({i, j}) = |{i, j}| = deg a (mod 2), a ∈ Γ1(i, j), then B1 = B0
1 t B1

1. Here B0
1 is a set

of undirected edges of degree 0 and B1
1 is a set of undirected edges of degree 1. Denote

by χ = χ(Γ) the integral unit quadratic form such that χ : Zn → Z,

χ(x) =
∑

i∈Γ0

x2
i −

∑
{i,j}∈B1

(−1)|{i,j}|xixj.

For the graph Γ = (Γ0,Γ1, s, t) and i, j ∈ Γ0 we denote by (i, j) — the edge of graph

Γ with unknown or arbitrary direction. The edges with even degree are usually drown

solid and the edges with odd degree are drown dotted.

We say that χ is positive if χ(r) > 0 for all r 6= 0. An integer vector r ∈ Zn is

called a root if χ(r) = 1. The canonical base vectors ei are called simple roots. The root

r =
∑

i∈Γ0
rie

i is called positive root (resp., negative root) if in addition ri ∈ Z+ (resp.,

ri ∈ Z−) for any i ∈ Γ0 (we assume 0 ∈ Z+∩Z−). The root r is called sincere if ri 6= 0 for

all i ∈ Γ0. Two integral forms χ, χ′ : Zn → Z are Z-equivalent if they describe the same

maps up to a change of basis, that is, if there exists a linear Z-invertible transformation

T : Zn → Zn such that χ′ = χT .

For {i, j} ∈ B1, we denote by T εij : Zn → Zn the Z-linear transformation ([4], [5]):

T εij(e
t) =

{
et, if t 6= i;

ei + (−1)|{i,j}|ej, if t = i.
(1)

with ε = (−1)|{i,j}| ∈ {+,−}. If a degree |{i, j}| is even then we call T+
ij an inflation for

χ, if |{i, j}| is odd, we call T−ij a deflation for χ. The forms χ and χT εij are Z-equivalent,

if χ is a unit form, then χ′ = χT εij is a unit form, and χ is positive if and only if χ′ is

positive.

For bigraph B we will use notions of chain, simple and closed chain, tree and forest in

common meaning. We say that tree B is 0-tree (0-forrest) if any edge has degree 0. Any

point of tree which is incident with more than two edges is called branch point. If point

x is not branch and B|S connected component of B|Γ0\{x} which does not contain branch

point then the full subgraph B|S∪{x} is called tail of x and is denoted by −→x .

Proposition 1 ([4]). Let χ be an integral positive unit form, B its bigraph. Then

there is a sequence of deflations of type (1) with composition T such that the bigraph BT
of form χT is a 0-forrest of Dynkin type. In this case, it is a disjoint union of some of

the following Dynkin diagrams: An (n > 1), Dn (n > 4), or En (n = 6, 7, 8). If B is

connected then BT is just a 0-tree. The Dynkin type is uniquely defined by χ.
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We say that a graph Γ is reduced (A-reduced) if its underlined bigraph B(Γ) can be

reduced to a disjoint union of Dynkin diagrams (Dynkin diagram of A type).

3. The main result

We consider the problems, that consist of the differential graded category (dgc) U
together with it’s underlined directed graded graph Γ and undirected bigraph B. We

consider only dgc each clear contour of which is active and underlined graph of which is

correctly defined. Such problem is denoted by (U ,Γ,B). The class of such problems is

denoted by Υ.

The connected problem (U ,Γ,B) ∈ Υ is called Dynkin problem and the correspondent

graph Γ is called Dynkin directed graded graph if B(Γ) is one of the Dynkin diagrams

(An, Dn, E6, E7, E8). If B(Γ) = An then we say that Γ is An-graph and analogically for

all types An, Dn, E6, E7, E8.

Theorem 1. Let U be differential graded category having a correctly defined underlined

graded graph Γ, and the quadratic form χ is positively defined. We assume that any clear

contour is a contour of differential type. Then there exists a composition of reductions

R : U → U ′ such that ΓU ′ is a disjoint union of graphs of Dynkin type.

4. Reduction and preliminary Lemma

We consider a problem (U ,Γ, Q) ∈ Υ. The algorithm of reduction of the problem

(U ,Γ,B) is shown in [5]. We will describe those action on graph Γ, this represents those

algorithm on the whole problem (U ,Γ,B).

Here on the diagrams below we draw all edges as solid arrows but they can have

different degrees, moreover, we depict the direction of the arrow, if it does not matter.

Suppose that τ ∈ Γ1(i, j) is a deep minimal regular edge with degree deg τ = |τ |. The

general case is:

Define the reduction on Rij(Γ). We assume that there is τ ∗ : j → i such that

ττ ∗ = 1j, and 1i = 1i1 + 1i2 = (1−τ ∗τ) + τ ∗τ is a decomposition on the sum of mutually

commuting idempotents. For any x : ix → i we obtain the edges (1−τ ∗τ)x : ix → i,

|(1−τ ∗τ)x| = |x| and τx : ix → j, |τx| = |x| + |τ |, besides, d′((1−τ ∗τ)x) = aτx + (d(x))′.

For any y : i → iy there are: y(1−τ ∗τ) : i → iy, |y(1−τ ∗τ)| = |y| and yτ ∗ : i → j,

|yτ ∗| = |y| − |τ |, and, d′(yτ ∗) = y(1−τ ∗τ)a+ (d(y))′.
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The differential on RijU is obtained by substitution 1i = (1−τ ∗τ) + τ ∗τ . Then any

path crossing on the point i is a combination of two pathes:

y1 . . . yq yx xp . . . x1 ⇐⇒ y1 . . . yq (y(1−τ ∗τ) yτ ∗τ)

(
(1−τ ∗τ)x
τ ∗τx

)
xp . . . x1.

Lemma 1. Let (U ,Γ,B) ∈ Υ. Let τ ∈ Γ1(i, j) be a minimal deep regular edge, and

let Rij : U → U ′ be a complete reduction. Then (RijU ,RijΓ,RijB) ∈ Υ.

We denote the reduced problem (RijU ,RijΓ,RijB) simply byRijΓ. The composition

of reductions Ri1,j1 , · · · ,Rik,jk can be denoted by R = Ri1,j1 · · ·Rik,jk and by RΓ — the

result of consequent reductions of the graph Γ. Note that if the points i and j are not

incident then the reduction is trivial and Ri,jΓ = Γ.

Two problems A = (U ,Γ,B) and A′ = (U ′,Γ′,B′) are called R-equivalent if there is

the sequence of transformation R : A→ A′, we denote A
R∼ A′.

We say that the graph without cycles (tree) Γ is well directed if it has no non trivial

pathes of a length > 1.

Lemma 2. Let a subgraph Γ|{1,2,...,k} of Γ is a tail with gluing point k ∈ Γ0. Then

there is a composition of reductions R = Ri1,j1 · · ·Rik,jk with ir ∈ {1, . . . , k − 1}, jr ∈
{1, . . . , k− 2} such that: (1) Q(Γ) and Q(RΓ) coincides; (2) RΓ|{1,...,k} is a well directed

tail; (3) the direction of an edge (k − 1, k) does not change.

Proof. We proceed by induction on the length of tail k. For k = 2 we have nothing

to do. On the pictures below the edge is undirected if its direction is not important. So

we can apply the assertion of Lemma to the tail RΓ|{1,...,k−1} with gluing point k− 1 ∈ Γ0

and reduce it to the demanded type. Note that by the construction the edges of subgraph

Γ|Γ0\{1,...,k−1} do not change. If the obtained graph RΓ is well directed then the proof is

over. Otherwise we do the the transformation R = Rk−2,k−1Rk−2,k−3 and obtain:

After that we can apply the assertion of Lemma to the tail RΓ|{1,...,k−2}. �

Corollary 1. If the graph Γ is Dynkin then there is a composition of reductions R such

that RΓ is a well directed graded graph of the correspondent type. Besides, Q(RΓ) = Q(Γ).

Proof. The case An is already proven in Lemma 2. For other Dynkin graphs we use

the algorithm from Lemma 2 for the longest tail of the Dynkin graph. After that we can

use the same algorithm for other tails depending on direction of the edge of the longest

tail that is incident to the branch point. �
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Denote by Γ+
0 (resp., Γ−0 ) the subset of vertices i ∈ Γ0 such that Γ1(i, j) = ∅ (resp.,

Γ1(j, i) = ∅) for any j ∈ Γ0.

Corollary 2. Let (U ,Γ,B) be the problem from the class Υ, and j ∈ Γ+
0 ∪ Γ−0 . Let

BΓ0\{j} be a Dynkin forest. Then there exists the composition of reductions R : Γ → Γ′

on the subset Γ0 \ {j} such that the subgraph Γ′Γ0\{j} is well directed.

5. Proof of the theorem

Let (U ,Γ,B) ∈ Υ, the quadratic form χ is positive, and Γ is a connected graph. Let

j ∈ Γ±0 = Γ+
0 ∪ Γ−0 . Then any edge a ∈ Γ1 is deep on the subgraph ΓΓ0\{j} if and only if

it is deep on the whole Γ. Therefore the reductions on ΓΓ0\{j} are correctly defined on Γ.

By the induction assumption on the number of points, we can assume that the subgraph

ΓΓ0\{j} can be reduced the forrest of Dynkin type. Hence, using Corollary 2, we can

assume that all connected components of ΓΓ0\{j} are well directed Dynkin trees. For the

further proof, we can assume j ∈ Γ+
0 , the case j ∈ Γ−0 can be considered similarly. Then

each contour on Γ is active triangle incident to j of a type where d(c) = ba,

deg(c) = deg(a) + deg(b) − 1. Two triangles are incident either to common minimal or

common maximal edge.

The point j ∈ Γ0 is called breaking if ΓΓ0\{j} has > 1 connected components. For

the breaking j ∈ Γ0, let ΓΓ0\{j} = S1 ∪ . . . ∪ Sq be the union of supports for connected

components where q denotes the number of components and |S1| > . . . > |Sq|. For the

positive form χ the following hold:

1) q is not more than 3;

2) if q = 3 then |S3| = 1, |S2| 6 2, and the subgraph ΓS1 is of A-type;

3) if q = 2 then at least one of the subgraphs ΓS1 , ΓS2 is of A-type.

We assume the major component S1 to be either or not of A-type or the largest (if all

components are of A-type).

Let (U ,Γ,B) ∈ Υ, j ∈ Γ+
0 ∪ Γ−0 and ΓΓ0\{j} be well directed tree. If i1, i2 ∈ ΓΓ0\{j}

are both incident to j then all intermediate points are incident to j too. If j ∈ Γ+
0 then

we have the diagram of a type The point i ∈ Γ0 is called leaf if

ΓΓ0\{j,i} has the same number of connected components as graph ΓΓ0\{j} or equivalently

if i is incident to only one edge. Assume, some point not incident to j. Then there is a

leaf point i ∈ ΓΓ0\{j} which is not incident to j.
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Lemma 3. Let A = (U ,Γ,B) ∈ Υ, χ > 0. Assume j ∈ Γ+
0 and the subgraph ΓΓ0\{j} is

a well directed tree of Dynkin type. Then there is the reduction R such that the obtained

problem RA ∈ Υ has a breaking point from Γ0±.

Proof. Assume, there is a leaf point i1 ∈ ΓΓ0\{j} which is not incident to j. Since

ΓΓ0\{j} is a connected graph then i1 is incident for some i2 ∈ Γ0 \ {j}. By the construc-

tion, i2 is a breaking point, and it can be transformed to + or − point by the suitable

transformation.

It remains to consider the case, all i ∈ ΓΓ0\{j} are incident to j. The graph ΓΓ0\{j}

is of A-type because otherwise it has a critical subgraph corresponding B(1). Therefore,

ΓΓ0\{j} is a tree graph of A-type. If i1 ∈ Γ±0 and i1, i2 are incident, then the edge

between i2, j are deep, and we can do the transformation Ri2,j to obtain the break-

ing point i2. Otherwise, if i1 6∈ Γ±0 and |Γ0| > 5 we obtain the following graphs:

Then the

graph Γ′′ = Rj,i2Γ
′ has a breaking point i2 which belongs to (Γ′′)−0 . �

We exclude the problems with the following subbigraphs, having non positive forms:

Let we give the sketch of the proof of Theorem. Assume j ∈ Γ+
0 , the case j ∈ Γ−0 can

be considered similarly. The subgraph ΓΓ0\{j} can be reduced to the Dynkin forrest by the

induction on the number of points since in this case the transformations on the connected

components of ΓΓ0\{j} are correctly defined on the whole Γ. Hence, using Corollary 2,

we can assume that all components are well directed Dynkin trees. Thereafter, Lemma 3

asserts that each problem to be considered contains a breaking point from Γ+
0 .

Denote by Υ0 the subclass of problems (A, j) with A ∈ Υ having the breaking point

j ∈ Γ±0 under the conditions that all connected components of ΓΓ0\{j} are of A-type. The

breaking point j ∈ Γ±0 is called hoc breaking point if |Γ0 \ S1| > 3, hence either or q = 3
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or the cardinality of second connected component > 2. We say that the hoc point j is

hoc+ (resp., hoc−) point if j ∈ Γ+
0 (resp., j ∈ Γ−0 ).

Lemma 4. Let A = (U ,Γ, Q) ∈ Υ, j ∈ Γ+
0 be the breaking point. Then there is an

equivalent problem A′
R∼ A and a breaking point j′ such that (A′, j′) ∈ Υ0.

Proof. If (A, j) 6∈ Υ0 then, by the induction assumption, the major connected com-

ponent ΓS1 is a tree having branch point. In this case there are just two connected

components due to the positivity of χ.

Firstly we consider the case when Γ has one triangle. If branch point does not in-

cident to this triangle then it can be chose to be a breaking point (possibly after some

transformation), and the obtained problem belongs to Υ0. Otherwise we have a sub-

graph of a type (probably, without point i1): If i ∈ Γ−0 then

(A, i) ∈ Υ0. Otherwise i is +point on ΓΓ0\{j} and i is a hot+ breaking point for Rj,i, be-

sides (Rj,i, i) ∈ Υ0. Then, excluding the critical problem with bigraph B(2), we conclude

that the problem has two or three clear triangles.

Now we show that there is an equivalent problem A′
R∼ A which either or belongs to

Υ0 or has a hoc breaking point from Γ±0 . So we assume |Γ0 \ S1| = 2.

Let i1, i2, i3 ∈ S1, Γi1,i2,i3 be connected graph and i1 be a leaf point. If il is not

incident to j, l = 1, 2, 3, then there is a hoc breaking point k ∈ {i1, i2, i3} ∩ Γ±0 .

We consider also the cases: 1) i1, i2 both do not branch and do not incident to j, and

i3 is incident to j; and 2) i1 ∈ S1 be a leaf point, i2 ∈ S1 ∩ Γ−0 be incident to i1 and i2

do not a branch point. For the first case, if i3 ∈ Γ−0 then it is a hoc− breaking point. We

have one of the following problems:

For the both cases, the problem Rj,i3A ∈ Υ has a hoc+ point i3.

Consider the case when Γ has two clear triangles. Taking into account the critical

bigraph B(2) and the above considerations we obtain one of the following cases (probably,

without point i1): . For all cases,

the graphs can be reduced to tree graph directly.
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If Γ has three clear triangles, then we obtain taking into account the critical bigraph

B(2) and the above considerations we obtain the following case (probably, without i1):

Then i4 is a hoc− point. Therefore, it remains to consider the case when A has a hoc

point and three clear triangles.

We exclude the bigraphs B(4), having non positive quadratic forms. Then it remains

to consider the following cases:

It is simply to verify that both the cases are reduced directly to the Dynkin tree. �

Lemma 5. Let j ∈ Γ+
0 be the breaking point and (A, j) ∈ Υ0. Then there is an

equivalent problem A′
R∼ A such that A′ is a Dynkin tree.

Proof. If there are three connected components, then |S3| = 1, |S2| = 1 or |S2| = 2.

If there are more then one triangle contour on S1∪j then problem does not have positive

quadratic form. There can be only one triangle, which can be moved to the leaf point

of the connected component using the reduction of one of the deep edges and finally we

obtain the Dynkin tree:

Note that due to positivity of χ if |S2| = 2 then |S1| 6 4 and we obtain the E-reduced

problem, if |S2| = 1 then |S1| can be arbitrary and we obtain the D reduced problem.

Consider the case of two connected components. It has two subcases: |S2| = 1 and

|S1| ≥ 2. Consider the subcase |S1| ≥ 2. If there is only one triangle then the problem

can be reduced to the tree of A-type using the same reductions as in case above (with

three components). The problem with two triangles is critical of type B(2) or B(6) or is

equivalent to problem E7 if |S1| = 4:
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The case with opposite direction is more complicated, but is also reduced to E7.

Consider the subcase |S2| = 1. We will try to obtain the equivalent problem with

|S1| ≥ 2. If the component S1 has a tail of the length 2 and more it is obvious. We

consider the problem with triangle containing end point of S1. It can have one or two

triangles. Those cases are reduced directly to Dynkin problem. The problem with three

triangles is critical of type B(5). The last case is the problem for which S1 has two tails

each containing one point. It can have only one triangle, then after the reduction

we obtain the problem with |S1| ≥ 2. The problem with two triangles is critical B(6). �

The proof of Theorem 1 simply follows from Lemmas 3, 4, 5.

Note that using the transformation of raising the degree for dgc U we can obtain the

finale graphs of Dynkin type having only the even degrees of edges. In another words,

the obtained bigraph is a 0-forrest of Dynkin type.
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