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Abstract. We show a possibility to apply certain philosophical concepts
to the analysis of concrete mathematical structures. Such application gives
a clear justification of topological and geometric properties of considered
mathematical objects.
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1 Introduction

Interdisciplinary studies represent one of main trends in the modern science.
Several essential problems in the science and its applications need combination
and interaction of methods and ideas from different areas of our knowledge.
But there appear many practical difficulties in the realization of an interdis-
ciplinary approach. The point is that experts in a particular topic may be
not so deep involved in related areas outside their competence For example,
we observe very active development of mathematical modelings in the biology
and ecology. But the use of such models by experts from these disciplines is
essentially restricted by the lack of mathematical techniques. From the other
hand side, mathematical models looks as very simplified and degenerated ones
for experts in life sciences. The only way to overcome these difficulties is to
create the practical and patient collaboration between concrete scientists.

Another traditional and old circle of discussions (and many speculations)
concerns the relation between concrete sciences and the philosophy. In the
time of Newton and Leibniz the concept of the Naturphilosophy was a com-
monly accepted basis for the unification of several scientific disciplines. But
necessary specialization and dissipation of particular sciences produced the di-
vergence of philosophy and concrete sciences and even certain moral prejudices.
No doubts, concrete results in physics, biology etc. are still very stimulating
for philosophical studies. But we would like to show that there exists a fruit-
ful inverse influence. The aim of this work is to illustrate a natural applied
aspects of particular philosophical concepts in the framework of the mathema-
tics. We did choose a concrete mathematical object for this illustration. Due
to the interdisciplinary character of this journal, we restricted ourselves at few
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basic observations about this object. Our explanations with necessity will be
restricted technically to as less advanced level as it is possible to keep an inte-
rest of not only especially mathematical audience. For detailed mathematical
description of related structures we refer to [4], [5].

The myth of Plato’s Cave served as one of the motivations for creating
his concept about the world of ideas and the world of things. In the dialogue
”State” he gives a number of examples illustrating this position. As we know,
Plato considered mathematics as one of the most important sections, used
in the construction of his philosophical system. Mathematical theories can
serve as simple and illustrative tools for the existence of a “world of ideas”
and a “world of things.” In a number of model situations, we are dealing
with objects that appeal from our observations in physics, biology, ecology
etc. But full understanding of the mathematical structures of these models
in many cases requires consideration of more general mathematical theories,
which under some canonical mapping lead to the considered model situations.

As an example, we can cite a number of recent works on the study of spa-
ces of random discrete measures. Such measures arise in many applications, in
particular, in the theory of representations of current groups (Gelfand-Graev-
Vershik), in models of biosphere (motivated by V. Vernadsky), etc. It turned
out that the correct understanding of the topology and geometry of spaces of
discrete measures naturally arises from the suitable configuration spaces on
which these concepts are already well known.These configuration spaces we
called Plato spaces and their elements are interpreted as “mathematical ideas”
for our models of observed phenomena (of things). Maybe a naive illustra-
tion of this approach is related to Manin’s concept of the adelic world as the
space of Ideas [14]. Moreover, the real component of adeles can be regarded
as a “shadow” in the sense of Plato’s theory. Number of similar examples in
mathematical models can be big. Below we will describe a realization of the
mentioned concept in a particular case of random discrete measures.

Configuration spaces form an important and actively developing area in
the infinite dimensional analysis. From one hand side, these spaces repre-
sent reach mathematical structures which combine in a very non-trivial way
continuous and combinatoric aspects of the analysis. From the another side,
configuration spaces give natural mathematical techniques in the applications
to problems of mathematical physics, biology and ecology.

Spaces of discrete Radon measures (DRM) may be considered as genera-
lizations of configuration spaces. Main specific moment in the study of these
spaces is such that the supports of discrete measures are typically not more
configurations. The latter change drastically technical methods in their study.
Note that spaces of DRM have several motivations coming from different areas
of mathematics and applications, see comments below.

When choosing a model, one needs to take into account different features
which are relevant for the behavior and properties of the system. The consi-
dered state space can be chosen as a discrete set or continuous, such as Rd or
more generally, a Riemannian manifold X. While discrete models are easier to
analyze (e.g. [13]) and yield more results, a continuous state space models a
physical system more realistically.

Bounded region vs. unbounded region/state space: A bounded region ma-
kes more sense from a modeling point of view. On the other hand, one needs to
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take into account the interaction of particles with the boundary. A way to cir-
cumvent this is by considering an unbounded region and restricting the system
after analyzing the model. The kind of region also determines whether a finite
or an infinite amount of particles should be considered. Another advantage of
an unbounded region with an infinite number of particles is that phase transiti-
ons may be observed since invariant measures may not be uniquely determined.
For examples, see [3] and the references therein.

Different mechanisms yield different behaviors of the system. This choice
of course depends on the desired phenomenon which is to be modeled. There
are some additional options which were already mentioned above. For our
situation, we choose a specific version of a continuous particle system with
unbounded state space Rd. Instead of considering a homogeneous configuration
space, the particle system comes from the cone of positive discrete Radon
measures. One specific property of this object is that particles in the space Rd
are assigned a positive number, or “mark”, which represents a property of the
particle such as weight. Some general analytic and geometric considerations
for models on the cone of Radon measures have been carried out in [7, 11].

Note that this approach differs from the so-called marked configuration
spaces considered in [1, 12]. On the other hand, there is a direct relation to
the extended configuration space which we describe below. While the analysis
and dynamics on the cone are of special interest and the modeling possibilities
of the cone are useful in applications, one may also give some motivations
for this object without referring to these analytical properties or configuration
spaces in general. Below we explains three motivations from theoretical biology,
probability theory and representation theory.

The mathematical object of interest for us is the cone of positive DRM,
defined by

K(Rd) :=

{
η =

∑
i

siδxi ∈M(Rd)

∣∣∣∣∣si ∈ (0,∞), xi ∈ Rd
}

where by convention, the zero measure 0 ∈ K(Rd) is included. This work is
concerned with the analytic properties of the cone. On the other hand, there
are three approaches which justify the use of this object without even conside-
ring its analytical properties. For one, there is the aspect of modeling biological
systems. Second, the cone appears naturally when considering certain genera-
lized stochastic processes. Third, the cone is given as the space where Gamma
measures are localized, which emerge from representation theory for current
groups. These three motivations will be explained below.

There is an external non-mathematical motivation to study particle sys-
tems realized as elements of the cone. Namely, Vladimir Vernadsky wrote the
following:

• “Organisms [...] are always separated from the surrounding inert matter
by a clear and firm boundary.” [19, p. 56]

• “Living matter [...] is spread over the entire surface of the Earth in a
manner analogous to a gas [...].” [19, p. 59]

• “In the course of time, living matter clothes the whole terrestrial globe
with a continuous envelope [...].” [19, p. 60]
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This can be interpreted in the sense that system of living matter should possess
two properties: For one, the system should have a discrete nature. Further-
more, there is living matter everywhere in the system. In mathematical terms,
this means that the support of this system should be dense in the underlying
position space. Lastly, to be realistic, the system should have finite local mass
due to the physical limitations of our world. The mathematical realization of
these properties is given by the cone.

The second motivation comes from the theory of generalized stochastic
processes, i.e. processes on the space D′(Rd) of generalized functions. By [17,
Thm. 3.3.24], infinitely divisible processes on D′(Rd) are actually concentrated
on the subspace K(Rd). Note that this result holds independently of the topo-
logical and analytical considerations done in later chapters. For a subclass of
measures, the so-called Gamma measures, we will also show a direct proof of
this statement.

Measures supported on K(Rd) naturally appear in the study of repre-
sentations for current groups. Namely, when studying so-called commutative

models of representations of (SL(2,R))R
d

. When considering representations

with respect to the unipotent subgroup of (SL(2,R))R
d

, we arrive at spectral
measures which are defined on the space D′(Rd) and supported on K(Rd).
Furthermore, these measures show some invariance properties. These conside-
rations were first done by Gelfand, Graev and Vershik [6]. Later, Tsilevich,
Vershik and Yor [18] used this as a starting point to further analyze so-called
Gamma processes.

As seen here, these measures supported on the cone K(Rd) appear natu-
rally without any a priori restriction of the spaces or aspects of modeling.

There is another mathematical explanation why it makes sense to consi-
der K(Rd). If we take the class of Gamma-Poisson-measures on the extended
configuration space Γ(R∗+ × Rd), we see that these measures assign full mass
to the subset of configurations with finite local mass, or Plato configurations.
These configurations can be identified with objects in the cone, i.e. there exists
a one-to-one correspondence between the so-called Plato space Π(R∗+×Rd) and
the cone K(Rd) [4].

2 Preliminaries

This section will include basic concepts from configuration spaces Γ(R∗+ × Rd),
the cone K(Rd) and the connection between these two.

2.1 The Cone of Positive Discrete Radon Measures

We start by the introduction of the cone of positive discrete Radon mea-
sures as the subset of the space of Radon measures M(Rd). Furthermore, the
notion of the support of a measure and relations between elements in K(Rd) are
defined. Recall that by Vernadsky’s theory of living matter, a system should
be dense everywhere, discrete and have finite local mass.

One more property which we want from our system is that its elements
are indistinguishable in the sense that the system given by (si, xi)i∈I and
(sπ(i), xπ(i))i∈I behave the same, where I is some countable index set and π
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an arbitrary permutation of I. One possibility is to realize our system as sums
of point masses δy, where y is either the mark and position, or just the posi-
tion of a particle, depending on the setup. This automatically yields a discrete
particle system. To obtain the other two properties, it is useful to let y repre-
sent the position of a particle, while the mark is considered as a weight of the
point mass. These properties become clear when we consider a certain class of
measures, namely, Gamma measures.

Definition 2.1. 1) The cone of nonnegative discrete Radon measures is
defined as follows:

K(Rd) :=

{
η =

∑
i

siδxi ∈M(Rd)

∣∣∣∣∣si ∈ (0,∞), xi ∈ Rd
}

By convention, the zero measure η = 0 is included in K(Rd).
2) We denote the support of η ∈ K(Rd) by

τ(η) := {x ∈ Rd | 0 < η({x}) =: sx(η)}.

If η is fixed, we write sx := sx(η).

3) For η, ξ ∈ K(Rd) we write ξ ⊂ η if τ(ξ) ⊂ τ(η) and sx(ξ) = sx(η) for all
x ∈ τ(ξ). If additionally |τ(ξ)| <∞, we write ξ b η.

4) For a function f ∈ Cc(Rd), denote the pairing with an element η ∈ K(Rd)
by

〈f, η〉 :=
∑

x∈τ(η)

sxf(x).

While K(Rd) can be viewed as a subset of the space of positive Radon
measures M(Rd), it is not advisable to consider it as a subset topologically.
This method works for the space Γ(Y ) introduced below, as will be explained
later. For K(Rd), it does not yield satisfactory topological results. Instead,
we keep Plato’s theory in mind and see K(Rd) as the real-world projection of
another space, called the Plato space Π(R∗+ × Rd).

2.2 Plato’s theory

As stated in the introduction, the cone K(Rd) is a suitable object to
describe particle systems in the real world. On the other hand, the question
arises how to define and interpret mathematical structures on the space K(Rd).
As a motivation, we give a short overview of Plato’s theory of forms.

In the theory, Plato stated that observations in the real world are mere
projections of higher forms or ideas. One way to picture this is the so-called
cave allegory, which was recited by Ross (1951) as follows: “A company of men
is imprisoned in an underground cave, with their heads fixed so that they can
look only at the back wall of the cave. Behind them across the cave runs a
wall behind which men pass, carrying all manner of vessels and statues which
overtop the wall. Behind these again is a fire. The prisoners can only see the
shadows [...] of the things carried behind the wall, and must take these to be
the only realities” [15, P. 69].
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Applied to our setting, the space K(Rd) is interpreted as the shadows
projected onto the cave wall. On the other hand, the space Π(R∗+ × Rd) which
will be introduced below is the space of forms or ideas, represented by the
objects carried in front of the fire. While the space K(Rd) is taken to be our
reality, we use the space Π(R∗+ × Rd) to define mathematical operations. The
spaces are connected via the bijection R : Π(R∗+ × Rd) → K(Rd) introduced
below. In accordance with the cave allegory, R is also called reflection mapping.

2.3 Configuration Spaces

As we will see in the next chapter, the Plato space Π(R∗+ × Rd) is a specific
subset of the so-called configuration space Γ(R∗+ × Rd), which will fulfill the
assumptions stated heuristically in Chapter 2.1.

In general, the space of locally finite configurations Γ(Y ) is the space of
all subsets of Y which are finite in any compact set Λ ⊂ Y . The following
definition makes this notion more precise.

Definition 2.2. Let Y be a locally compact Hausdorff space. The space of
locally finite configurations over Y is defined as

Γ(Y ) = {γ ⊂ Y : |γ ∩ Λ| <∞ ∀Λ ⊂ Y compact}

where | · | denotes the number of elements of a set.

From a physical perspective, Y is considered as phase space of an inte-
racting particle system. A configuration γ ∈ Γ(Y ) represents a set of indistin-
guishable agents (e.g. particles, plants) which may interact with each other. In
our considerations, we always consider Y = R∗+ × Rd. More generally, Rd could
be replaced by some more general locally comapct space X. In this chapter,
we recall some properties of Γ(Y ) which will form the basis for the Plato space
Π(R∗+ × Rd).

2.3.1 Topology and Measurable Structure of Γ(Y )

There exists a natural embedding of Γ(Y ) into the space of Radon mea-
sures M(Y ) on Y , namely

Γ(Y ) 3 γ 7→
∑
y∈γ

δy ∈M(Y )

where δy denotes the Dirac measure at point y ∈ Y . We equip Γ(Y ) with
the vague topology induced byM(Y ), i.e. the coarsest topology such that the
following mappings are continuous for all f ∈ Cc(Y ), where Cc(Y ) denotes the
space of continuous functions with compact support:

Γ(Y ) 3 γ 7→ 〈f, γ〉 =
∑
y∈γ

f(y)

In fact, Γ(Y ) equipped with this topology is a Polish space. A more detailed
analysis of the topological properties of Γ(Y ) can be found in [10].
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The construction of a topology enables us to consider the Borel-σ-algebra
B(Γ(Y )). It should be noted that this σ-algebra coincides with the σ-algebra
generated by the following mappings:

NΛ : Γ(Y )→ N0, γ 7→ NΛ(γ) = |γ ∩ Λ|, Λ ∈ Bc(Y )

where Bc(Y ) denotes all pre-compact Borel subsets of Y , see e.g. [9].
We give another construction of the measurable space (Γ(Y ),B(Γ(Y ))

which will be useful for other considerations. For Λ ∈ Bc(Y ), we define the
space of configurations supported in Λ.

Γ(Λ) := {γ ∈ Γ(Y ) : γ ∩ Λ = γ}.

Furthermore, for n ∈ N, consider the set of n-point-configurations supported
in Λ:

Γ(n)(Λ) := {γ ∈ Γ(Λ): |γ| = n},Γ(0)(Λ) := {∅}

Since γ ∈ Γ(Y ) is locally finite, the elements of Γ(Λ) are finite and we have the
disjoint decomposition

Γ(Λ) =
∞⋃
n=0

Γ(n)(Λ). (2.1)

We can represent Γ(n)(Λ) via symmetrization of the underlying space:

Λ̃n/Sn ' Γ(n)(Λ) (2.2)

where
Λ̃n := {(x1, . . . , xn) ∈ Λn | xi 6= xj ∀i 6= j}

the off-diagonals and Sn the symmetric group of n elements. This way, Γ(n)(Λ)
can be equipped with the topology induced via Λn. Furthermore, Γ(Λ) is
equipped with the topology of disjoint unions. Hence, we can define the Borel-
σ-algebra B(Γ(Λ)) given by this topology.

For two sets Λ1,Λ2 ∈ B(Y ),Λ2 ⊂ Λ1, define the projection mapping

pΛ1,Λ2
: Γ(Λ1)→ Γ(Λ2), γ 7→ γ ∩ Λ2

where we set pΛ2 := pY,Λ2 . It was shown in e.g. [16] that (Γ(Y ),B(Γ(Y )) is the
projective limit of the spaces (Γ(Λ),B(Γ(Λ)) for Λ ∈ Bc(Y ). This especially im-
plies that the mappings pΛ are B(Γ(Y ))-B(Γ(Λ))-measurable. The construction
of B(Γ(Y )) via projections will play an important role in the construction of
measures on Γ(Y ).

2.3.2 The Space of Finite Configurations

For mathematical purposes, it is important to also consider the space
Γ0(Y ) of finite configurations, i.e.

Γ0(Y ) := {γ ∈ Γ(Y ) : |γ| <∞}

where | · | denotes the number of elements of a set. While the definition implies
that Γ0(Y ) is a subset of Γ(Y ), the interpretation is a different one: Γ0(Y )
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serves as a mathematical counterpart to the physical space Γ(Y ). Also, the
spaces Γ(Y ) and Γ0(Y ) are topologically different: While Γ(Y ) is seen as a
subspace ofM(Y ) with the inherited topology, we use a different approach for
Γ0(Y ) which will be explained in this chapter. The approach is similar to the
one used in Chapter 2.3.1, but yields different results. We set

Γ
(n)
0 (Λ) := Γ(n)(Λ)

where Λ is an arbitrary Borel subset of Y . Since we only deal with finite
configurations, we may use decomposition (2.1) for Λ = Y , i.e.

Γ0(Y ) =
∞⊔
n=0

Γ
(n)
0 (Y ).

Furthermore, we may consider the symmetrization (2.2) to obtain

Ỹ n/Sn ' Γ(n)(Y ).

For Γ(n)(Y ), we choose the topology induced by the space Y n. For Γ0(Y ), we
may use the topology of disjoint unions. For a more detailed description of the
topology used here, we refer to [9].

Remark 2.3. The purpose of the space of finite configurations will become
clearer once we examine specific models. Since the models are introduced on
the cone, we postpone this discussion until after we have introduced the relevant
spaces related to K(Rd).

2.4 Relation Between K(Rd) and Γ(R∗
+ × Rd): The Plato

Space Π(R∗
+ × Rd)

In this section, we want to establish the connection between the con-
figuration space Γ(R∗+ × Rd) and the cone K(Rd). Our goal is to define a
certain subspace Π(R∗+ × Rd) ⊂ Γ(R∗+ × Rd) such that there exists a one-to-
one-correspondence between Π(R∗+ × Rd) and K(Rd) in the following form:

R : Π(R∗+ × Rd)→ K(Rd), γ =
∑

(s,x)∈γ

δ(s,x) 7→
∑

(s,x)∈γ

sδx.

In terms of Plato’s theory, this mapping takes ideas γ ∈ Π(R∗+ × Rd) and
projects (or reflects) them to real-world objects η ∈ K(Rd). Obviously, R is
not defined on the whole space Γ(R∗+ × Rd). Therefore, we need to construct
a suitable subspace. In other terms, the Plato space constructed below is also
known as the set of pinpointing configurations with finite local mass, denoted
by Γpf(R∗+ × Rd). We explore these two properties in more detail below.

Define the set of pinpointing configurations Γp(R∗+ × Rd) ⊂ Γ(R∗+ × Rd)
as all configurations such that if (s1, x1), (s2, x2) ∈ γ with x1 = x2, then
s1 = s2.

Remark 2.4. The pinpointing property ensures that there are no two elements
of a system at the same position. Due to the shape of elements in K(Rd), it is
obvious that this would not be possible.
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Let us now take into account the second property of Π(R∗+ × Rd). To this
end, we define the local mass of a configuration.

Definition 2.5. For a configuration γ ∈ Γp(R∗+ × Rd) and Λ ⊂ Rd compact,
set the local mass as

γ(Λ) =

∫
R+×Rd

s1Λ(x)dγ(s, x) =
∑

(s,x)∈γ

s1Λ(x) ∈ [0,∞]

This notion enables us to define the Plato space.

Definition 2.6. The Plato space Π(R∗+ × Rd) ⊂ Γ(R∗+ × Rd) is defined as the
space of all pinpointing configurations with finite local mass, i.e.

Π(R∗+ × Rd) := Γpf(R∗+ × Rd) = {γ ∈ Γp | γ(Λ) <∞ for all Λ ⊂ Rd compact}.

Remark 2.7. 1) The property of finite local mass accounts for the third pro-
perty stated in Chapter 2.1. It ensures that the system only has finite
mass in any bounded volume, which makes it physically viable.

2) The pinpointing property as well as the finiteness of local mass are suffi-
cient to make R : Π(R∗+ × Rd)→ K(Rd) bijective.

3) The state space needs to be of the specific form Y = R∗+ × X for the
notion of pinpointing configurations to make sense.

Definition 2.8. Let f ∈ Cc(R∗+ × Rd) and η ∈ K(Rd). Define the following
pairing:

〈〈f, η〉〉 := 〈f,R−1η〉 =
∑

(s,x)∈R−1η

f(s, x)

3 Topology and Measure-Theoretical
Structures

In this chapter, we want to introduce a suitable topology on the cone
K(Rd). To this end, we consider the topology induced on Π(R∗+ × Rd) by the
extended configuration space Γ(R∗+ × Rd). Next, we use the mapping R to
induce a topology on K(Rd).

3.1 Topology on the Cone K(Rd)

The Plato space Π(R∗+ × Rd) naturally inherits the topological structure
of Γ(R∗+ × Rd), i.e. the topology is given by the vague topology induced from
the space of Radon measuresM(R∗+ × Rd). For a detailed description of topo-
logical and metric characterizations, see e.g. [10].

Remark 3.1. The space Π(R∗+ × Rd) is not complete: Take for example some

x0 ∈ Rd and s1 6= s2 ∈ R∗+. Furthermore, consider sequences s
(n)
i , x

(n)
i , i = 1, 2

with s
(n)
1 6= s

(n)
2 , x

(n)
1 6= x

(n)
2 for all n ∈ N and

s
(n)
i → si, x

(n)
i → xi, n→∞, i = 1, 2.
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Set

γ(n) := {(s(n)
1 , x

(n)
1 ), (s

(n)
2 , x

(n)
2 )} ∈ Π(R∗+ × Rd)

γ := {(s1, x0), (s2, x0)} ∈ Γ(R∗+ × Rd) \Π(R∗+ × Rd)

Let f ∈ Cc(R∗+ × Rd). Then

|〈f, γ(n)〉 − 〈f, γ〉| = |f(s
(n)
1 , x

(n)
1 ) + f(s

(n)
2 , x

(n)
2 )− f(s1, x0)− f(s2, x0)|

≤ |f(s
(n)
1 , x

(n)
1 )− f(s1, x0)|+ |f(s

(n)
2 , x

(n)
2 )− f(s2, x0)|

→ 0, n→∞.

Therefore, γ(n) → γ, n→∞ in Γ(R∗+ × Rd) and Π(R∗+ × Rd) is not complete.

From a naive point of view, it seems to make sense to consider the embed-
ding K(Rd) ⊂M(Rd) of the cone into the space of Radon measures, equipped
with the vague topology. Unfortunately, this topology has no relation to the
vague topology introduced above on Π(R∗+ × Rd). In the spirit of Plato’s theory
of ideas, the connection between Π(R∗+ × Rd) and K(Rd) is essential. There-
fore, we consider the final topology on K(Rd) induced by the reflection mapping
R, i.e. the finest topology such that the mapping

R : Π(R∗+ × Rd)→ K(Rd), γ =
∑

(sx,x)∈γ

δ(sx,x) 7→
∑

x∈τ(γ)

sxδx

is continuous. Here, we set for γ ∈ Π(R∗+ × Rd),

τ(γ) := {x ∈ Rd | ∃s ∈ R∗+ : (s, x) ∈ γ}

the support of γ. The usage of this topology has the obvious side effect that R
becomes a homeomorphism, which is helpful in and of itself in other regards.

In the further development of the considered theory is important to im-
plement the construction of a class of probability measures on Π(R∗+ × Rd),
namely, Poisson measures. The construction may be done on the larger space
Γ(R∗+ × Rd). For the class of Poisson measures, we can show that they assign
full mass to the Plato space Π(R∗+ × Rd). To obtain measures on K(Rd), we use
the pushforward of measures on Π(R∗+ × Rd) under the mapping R. A certain
subclass of specific interest is the class of Gamma measures. For the detailed
analysis we refer the reader to [4], [5].

References

[1] S. Albeverio, Y. G. Kondratiev, E.W. Lytvynov, and G. F. Us. 2006. Ana-
lysis and geometry on marked configuration spaces. arXiv Mathematics
e-prints, math/0608344.

[2] S. Albeverio, Yu. G. Kondratiev, and M. Röckner. 1998. Analysis and
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