Робота присвячена розвитку нового метода побудови метричної, ймовірнісної та розмірнісної теорій сімейств зображень дійсних чисел на основі дослідження спеціальних відображень, які символи одного з цих зображень переводять у ті ж символи іншого зображення з досліджуваного сімейства, і при цьому зберігають міру Лебега та розмірність Хаусдорфа-Безиковича (хоча можуть бути розривними на всюди щільних множинах). Такі відображення називаються G-відображеннями (G-ізоморфізмами систем числення). Метричні, ймовірнісні та розмірнісні теорії системи числення, між якими існує G-відображення, є тотожними (з точністю до G-ізоморфізму). У роботі показується глибокий зв’язок між довірчістю систем покриттів, породжених різними системами числення, та DP-властивостями вказаних вище відображень. Особлива увага приділена розвитку розмірнісної теорії Q∞-зображень дійсних чисел та методів доведення довірчості систем покриттів, породжених Q∞-зображеннями.
The paper is devoted to the development of a new method for the construction of metric, probabilistic and dimensional theories for families of representations of real numbers via studies of spacial mappings, under which symbols of a given representation are mapped into the same symbols of other representation from the same family, and they preserve the Lebesgue measure and the Hausdorff-Besicovitch dimension (for such mappings the set of points of discontinuity can be everywhere dense). These mappings are said to be G-mappings (G-isomorphisms of representations). Metric, probabilistic and dimensional theories of G-isomorphic representations are identical. We show a rather deep connection between the faithfulness of systems of coverings, generated by different representations, and DP-properties of above mentioned mappings. A special attention is paid to the development of dimensional theory of Q∞-representations of real numbers and to methods for proving of faithfulness of coverings, generated by Q∞-representations.