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ABSTRACT. Let J be a monic generalized Jacobi matrix, i.e. a three-diagonal block
matrix of special form, introduced by M. Derevyagin and V. Derkach in 2004. We
find conditions for a monic generalized Jacobi matrix J to admit a factorization
J = £4 with £ and 4 being lower and upper triangular two-diagonal block matrices
of special form. In this case the Darboux transformation of J defined by 3P =g is
shown to be also a monic generalized Jacobi matrix. Analogues of Christoffel formu-
las for polynomials of the first and the second kind, corresponding to the Darboux
transformation J(P) are found.

1. INTRODUCTION
Let {s,} —, be a sequence of real moments and let a functional & be defined on the
linear space P = span{\" : n € Z; := NU {0}} by the equality
(1.1) S(A\") =5,, neZy.
The functional & is called quasi — definite if all the principal submatrices of the Hankel

matrix (s,4%), ,_o are nonsingular for every n € Z, . Associated with such functional is

a sequence of monic polynomials {P,}.-, which are orthogonal with respect to & and
satisfy a three-term recurrence equations

(1.2) AP, () = Pt (A) + cnPa(A) + bpPa_i(N), 1€ Zy,

where by, ¢, € R, b, # 0, bp = 1 and initial conditions P_1(\) = 0 and Py(A) = 1.
The matrix

Co 1
bl C1 1
(1.3) J= b o

is called a monic Jacobi matrix associated with the functional &.
Let C[A] be the set of all complex polynomials and let &; = A& be a perturbed
functional defined by

(1.4) (A8)(p) = &(Ap(N)), p e C[A.
As is known (see [4]) the functional S, is quasi — definite if and only if
(1.5) P,(0)#0 forall neN.
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A sequence of monic polynomials {Pn} associated with the functional él is called
n=0

the Christoffel transform of {P,},—, (see [4], [21]). Relations between .J and the monic
Jacobi matrix J® associated with &; were studied in the quasi-definite case (see [3]).
As was shown in [3], every monic Jacobi matrix which satisfies (1.5) admits an LU-
factorization J = LU (see [3]), where L and U are lower-triangular and upper-triangular,
respectively, two-diagonal matrices and J®) admits the representation J® = UL. The
monic Jacobi matrix J®) is called the Darboux transformation of J without parameter.

Darboux transformations of monic Jacobi matrices which do not meet the condi-
tion (1.5) were studied in [10]. In this case it may happen that the perturbed functional
S; = AG defined by (1.4) is not quasi-definite and as was shown in [10] the natural
candidate for the Darbouz transformation 3®) ( without parameter) of such a matrix .J
can be found in a class of generalized Jacobi matrices studied in [5], [9]).

In the present paper Darbouz transformation of generalized Jacobi matrices associated
with not quasi-define functionals & are studied. It is shown that every generalized Jacobi
matrix J, which satisfies conditions similar to (1.5), admits an £4—factorization J = £4I,
with lower-triangular and upper-triangular two-diagonal block matrices £ and L[. It turns
out that the monic generalized Jacobi matrix J(), associated with the functional él,
can be represented as J () = ¢(¢. This monic generalized Jacobi matrix J (®) is called the
Darboux transformation of J (without parameter).

The Darboux transformations for generalized Jacobi matrices considered in the present
paper turns out to be useful in the investigation of special Stieltjes type continued frac-
tions associated with non-quasi-definite functionals and the corresponding moment prob-
lem studied in [8]. The results related to this topic will be published elsewhere.

The paper is organized as follows. In Section 2 we expose some material from [5] and
[9] concerning generalized Jacobi matrices associated with non-quasi-definite functionals.
In Section 3 we study the Darboux transformation of generalized Jacobi matrices (without
parameter). Analogues of Christoffel transforms of orthogonal polynomials correspond-
ing to generalized Jacobi matrices are found. In Section 4 the results of Section 3 are
generalized to the case of Darboux transformation of generalized Jacobi matrices with
a shift. In Section 5 an example of Darboux transformation of the monic generalized
Jacobi matrix is considered.

2. MONIC GENERALIZED JACOBI MATRICES ASSOCIATED WITH NON-QUASI-DEFINITE
FUNCTIONAL

Let {s;}52, be a sequence of real moments and let & be a linear functional defined
on the linear space P = span {)\j 1j € Z+} by the formula (1.1).
Definition 2.1. ([10]). Define a set N(s) of normal indices of the sequence s = {s,;}5°,
by

7‘—1

(2.1) N(s)={nj:dn, #0,j =1,2,...}, dn, = det(si1x); 1—0-
As follows from (2.1) n; is a normal index of s if and only if

S0 e 511_7’71
(2.2) det | --- £ 0.
Sn;—1 0 S2n;-2

We denote the first nontrivial moment e¢ := sy, 1, i.e., 5, = 0 for all £ < ny; — 1. For
example, if ny = 1, then sy # 0.
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Using moment sequence {s;}72,, we can construct the polynomials of the first and

the second kind (see [1], [6]), defined by for all j € N

o ) = Po, (1)
1 P, (M) — P,.(t
2. P,. =— _ — J J )
(23) Fo, (V) dnjdet Sn;~1 Sn; o0 Son;o1 | £0Qn; () 6t< A—t )
1T A o A

The polynomials P, (A\) and @y, () are solutions of a system of difference equations
(see [9], [18])

(2'4) bjyﬁj71(/\) — P ()‘)yﬂj (>‘) + Ynjpq (>‘) =0 (bo = 50)
subject to the initial conditions

1
(2'5) Pﬂq()‘) =0, Pﬂo ()‘) =1, Qn—l()\) = _%7 Qﬂo (/\) =0,
where b; € R\ {0}, p;(\) = A% + pg)_l)\gj_l +... 4 pgj))\ + p(()j) are monic polynomials
of degree {; = n;;1 —n; and generating polynomials of the following generalized Jacobi
matrix J, j € Z4.
One can associate with the system (2.4) the so-called monic generalized Jacobi matrix

(GIM) (see [9], [10])

Q:Po 90
%1 Qpl @1
(2.6) J= ,

By €,

where the diagonal entries are companion matrices associated with some real polynomials
p;j(A) (see [16])

0 1 0 0
0 0 1
(2.7) ¢, = : 0 are {; x {; matrices,
0 0 0 1
- - _pZ)—Q —PZ)_l
®; and B, are ¢; x £;11 and £; 1 x {; matrices, respectively, determined by
00 -~ 0 0o 0 -~ 0
(28) ZDj: S and %]‘+1: : o |, b1 ER\{O}, JE L.
00 --- 0 0O 0 --- 0
10 --- 0 bjy1 0 -~ 0

The matrix J defined by (2.6)— (2.8) is called a GJM associated with the functional &.
Sometimes J is called a GJM associated with the sequence {s; };io or the system (2.4)

to emphasize connection with polynomials p;(A) and numbers b;11, j € Z4.
The shortened GJM J; ;) is defined by

Q:Pi D,
(2.9) Jig) = Bin Gy ., i<j and i,j€Z,.
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The following connection between the polynomials of the first and the second kind
and the shortened GJM’s can be found in [9]

(210) Pn]. ()\) = det()\ - 3[07]'_1]) and an ()\) = Eodet()\ — J[l,j—l])'
Next, we introduce the inner product in the space E[Qo’nrl], by the formula

(2'11) [m,y] = (G‘%y)é[zo‘n

where z,y € 6[20 n;—1] and the matrix Go ;_1) is defined by the equality

)
51

. . 1
p) e py 1
(212) Glojoy=diag(Go,G1....Gj1), Gi=| = L i=0,j -1
bo—1
1 0
Let us set
(213) P(N) = (oA, Pi(N), ., Py (M), )T
QM) = (Qo(N), Q1(N), -, Qu,(N), .. )T

where Py, 1 (A) = APy, (A) and Qu, 41 (A) = A*Qq, (A), where 0 < k < njy1 —n;. Then
it follows from (2.4), (2.5) and (2.6)—(2.8), that

(2.14) (J-ADP(N) =0 and (J—A)Q(N\) =(0,...,0,1,0,...)7.
——
£o
Definition 2.2. Let us define the m—function of the matrix J by equality
(2.15) mio,j—11(A) = [(3f,,_11 = V) "€, €0l
where g = (1 0 - O)T is n; x 1 vector.

As was shown in [9, Proposition 6.1]
det(A - 3[1,]'71]) Ql'lj ()‘)

—€ — —
Odet()\—\j[o,j_l]) Pn()\)

J

(2.16) mpo,j-1](A) =

and mp j_1)(A) admits the following asymptotic expansion:

50 51 Son,—2 1
(2.17) Mo\ = =% =33~ g O <)\21) ’
where
k
(2.18) o) = {(3[7573._1]) eo,eo} . k<2n;—2.

Lemma 2.3. Let J be a GJM and let P,;(X\), Qn,;(\) be the corresponding polynomials
of the first and the second kind. Then there exists a monic Jacobi matrix J, such that

(2.19) Py, (0) = P;(0) and  Qu,(0) = Q;(0),

where ﬁj()\) and @j (M) are polynomials of the first and the second kind, respectively,
associated with J for all j € N.

Proof. First of all, we compute P,;(0) = det(—Jjo,j—1)) and expand it along the rows,
which have only one element equal to —1 and others equal to 0. Then we get

_Q:Po _:DO p(()O) -1
_%1 —Q: T . _bl p(l)
(2.20) P, (0) = P = 0
. . D, . 1

—Bj1 —C,, —b;_; py
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We use this equality for the following construction of the Jacobi matrix, as a hint

by 1
by *pél) 1

b —py

It follows from (2.10) and (2.20) that P,,(0) = ﬁj(O) (s € N). The proof of the second
equality in (2.19) is analogous. O

Corollary 2.4. Let J and ‘:j be GJM’s associated with systems (2.4) and

(222) Ejgﬁj—l ()\) - 5]<)\)§ﬁj ()‘) + gﬁj+1 ()‘) =0 (EO = g0)7

respectively and let Py ()), 1557, (A) and Qy; (M), @;j (M) be the corresponding polynomials

of the first and the second kind, respectively, associated with the matrices J and 5, for

all jeN. Ifpi™ =35~ and b, = b;, then

(2.23) Py (0) = Py, (0) and  Qn,(0) = Q5,(0), jeN.

Proof. The proof is immediate from Lemma 2.3, due to (2.20) since Py, (0), ﬁﬁj (0) are

completely determined by p((]j_l) = Eéj_l) and b; = Ej, for all 5 € N. Then we have

Py;(0) = P5,(0), for all j € N. Similarly, the polynomials Qy; (0), @, (0) are determined

by py ™" =Py " and b; = b, for all j € N. Then Qu,(0) = Q5,(0), forall j e N. [
3. THE DARBOUX TRANSFORMATION OF MONIC GENERALIZED JACOBI MATRICES

In this section, we study the Darboux transformation of GJM J and prove some
properties for polynomials of the first kind associated with matrix J. We use the fac-
torization matrices £ and 4, where £ and 4 are lower and upper triangular block matrices,
respectively, having the forms

Q[o 0 ‘uO 90
21 Q[l 0 0 ul 91
(31) L= . and U= U )

Lo Asy . 0 Us

the diagonal blocks 2; and i; are £; x ¢; matrices

1 0 0 e 0 0 1 0 ---0
0 1 0 0 o o 1 . ¢
(32) Q[J: and L[]: L0 ,uj#(),
I T T 0 -~ 0 0l
P TP Ry L —u; 0 -+ 0 0
the blocks £;11 and ®; are ;41 x ¢; and £; x £;1 matrices, respectively
00 --- 0 00 --- 0
(33) £j+1 = < : s [j+1 #0, Qj =1 = :
00 --- 0 0 0 0
0 0 -+ Ly 10 0

However, if £; = ;41 = 1, then we suppose
(34) ilj = (—uj), £j+1 = ([j—O—l)a @j = (1) and Qlj = (].)
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Let us say that the GJM J admits Lil—factorization if J can be represented in the
form J = £4, where £ and Y are given by (3.1)—(3.3).

Definition 3.1. Let a monic generalized Jacobi matrix J admit the L£U—factorization
of the form (3.1)—(3.3). Then the transformation

(3.5) J= 84— ug =3®
is called the Darboux transformation of matriz J, where the matrix J® is a GJM.
3.1. £il—factorization of generalized Jacobi matrices.

Lemma 3.2. Let J be a monic generalized Jacobi matriz associated with the functional
& and let £; :=njy1 —ny; > 1, j € Zy, where ng = 0 and {n;}32, is the set of normal
indices of the sequence s = {5;}32,. Let £ and 4 be defined by (3.1)-(3.3). Then J
admits LU—factorization of the form (3.1)-(3.8) if and only if the system of equations
(36) Uy = péo), —u; + [j = —péj), jEeN; —Uy [j+1 = bj+17 VR=y/m
is solvable.
Proof. Consider the product £l of the matrices £ and

2oLy Do

Lilly L1900+ Asshy 0,9,

(3.7) £l = L84 L9071 + Aoily I

where the blocks ;4l; and £;,19; are £; x ; and €;41 x {;;1 matrices, respectively

0 1 0 e 0
0 0 0
0 0 1
(3.8) W= . . L= |
Windd/) 0 0 0 (f VAV 0 O O
DT ¢) RN ) BN ¢) e 0o 0
u;  —py Pi—2 —Pi—a

the blocks £;114; and A;D; are ;41 x £; and ¢; x £;; matrices, respectively

(3.9) L8l = . AD, = =D,
J 7 0 o --- 0 7 o o0 ... 0 J
—liyiw; O --- 0 1 0 --- 0
Then 2j+1©j + Q[j+1ﬂj+1 has the following form:
0 1 0 0
0 0 1
(3.10) S‘jﬂ_l@j + Qllj+1ﬂj+1 = : . . ) 0 , ] €Ly
0 0 0 1

—wy+ 1 —pt) —pﬁi’,g —132)4
Comparing the product £4( with the matrix J in (2.6), we obtain the system (3.6).
If the system (3.6) is solvable, then J admits the factorization J = £ of the form (3.1)—
(3.3), where £ and Y are found uniquely. Conversely, if J admit £4—factorization then

the system of equations (3.6) is solvable. O
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Lemma 3.3. Let J be a GJM associated with the functional & and let J = £4 be its
LU~ factorization of the form (8.1)-(8.8) and let Py, (X\) be polynomials of the first kind
associated with §. Then

J
(3.11) Py (0) =[] we, forall jez, .
k=0
Proof. By Lemma 2.3 and Lemma 3.2 we obtain
(3.12)
7€P0 —Do pE)O) -1
~ —%1 _Q:m . —[11 pgl)
Py, (0)=det (—Jj0,5) = . = i .
. —Qj,1 . . —;I_
=B ¢, —b; Pé])
Up -1 uy —1
UO[1 u; — [1 0 uq ﬁ
= = = uk}
-1 —1| k=0
uj,llj u; — [j 0 u;
This completes the proof. O

Corollary 3.4. Let J be a GJM associated with the functional & and let J = £ be
its LU~ factorization of the form (3.1)-(8.3) and let Py, ()\) be polynomials of the first
kind associated with J. Then we have

(3.13) P, (0) =UjUj_q... uj_kPnjf,c(O), k< J and 7 ke Z+.

nj+1
Theorem 3.5. Let J be a monic generalized Jacobi matriz associated with the functional
& and let £; :==nj11 —n; > 1, j € Zy, where ng = 0 and {n;}32, is the set of nor-
mal indices of the sequence s = {s;}52, and let Py;(\) be polynomials of the first kind
associated with the sequence s = {5j}§';0, Then J admits the £4—factorization of the
form (8.1)—(3.3) if and only if

(3.14) Py;(0) #0, forall jeZy.
Furthermore
b, P, .. (0
(315) [j+1 = — ]—H, u; = n]+1( ) Ug = pgo), forall 7€ Zy .

Uy - P n; (0) ,
Proof. Let P,;(0) # 0 for all j € Z, then by Lemma 3.3 the equalities (3.15) are
equivalent to the system (3.6). Consequently, by Lemma 3.2 the matrix J admits the
L8l—factorization of the form (3.1)—(3.3). Conversely, let J admit the £i—factorization
of the form (3.1)-(3.3). Then by Lemma 3.3 P, (0) # 0 for all j € Z,. O

Remark 3.6. If £; = 1 for each j € Z,, then the factorization (3.1)—(3.3) coincides with
the factorization in [3], (see [3], section 2).

Remark 3.7. If £; =1 or ¢; = 2 for each j € Z, then factorization (3.1)(3.3) coincides
with the £8l—factorization in [10], (see [10], section 4).

Remark 3.8. Tt ny = 1 (i.e. £y = 1), then Py, (A) = det(A — Jpo,0) = PO (A) = A+ p{”
and by (2.3)

(3.16) PN =

Due to Py, (0) # 0 see (3.14), we have pgo) = —2L # 0 and by Lemma 3.3 ug = — 2.

50

S50 51|
1 A
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Proposition 3.9. Let J and 3 be GJIM’s associated with the difference systems (2.4)
and (2.22), respectwely If J admits £34— factomzatwn of the form (3.1)-(3.3) and p(])

p(()j), bjy1 = bJH forallj € Z,. Then the matriz 3 also admits £4— factorization of the

form (3.1)-(3.8).

Proof. This proof is clear, because by Theorem 3.5, we know P,;(0) # 0 for all j € Z
and ng = 0, where P, (\) are polynomials of the first kind assomated with the J. Using
Corollary 2.4, we obtain P .(0) #0 for all j € Z,, where P (/\) are polynomials of the

ﬁrst kmd associated with the GJM J From here the matrix ‘J satisfies Theorem 3.5, i.e.
J = £4, where the matrices £ and il are defined by (3.1)~(3.3). O

3.2. Some properties of the Darboux transformation.

Theorem 3.10. Let J be a GJM associated with the functional & and let J = £4 be
its £—factorization of the form (3.1)-(3.8). Then the matriz JP) = UL is a monic
generalized Jacobi matrix.

Proof. Consider the product 3£ of the matrices 4 and £

UoRAp + DLy Doy

Ui L LA + D185 D125
(3.17) UL = T o2y + DLy

(¢) In this part, we consider the case, when ¢; > 2 for all j € Z,. And we have the
following:

9 0 0 0 0 0

00 - 0
0 0 Ly o ’
0 0 0

where ;1 1£;41 and ©;2;4, are {41 x €; and ¢; x {;41 matrices, respectively. The
blocks ;2 and ©,;£,,1 are £; x £; matrices, such that

0o 1 0 0
0 0 1 K : 0 .. 0
3.19) s, = . T | and D854
2% Jj+
0 -+ 0 1 0 0 . 0
o, e 1
—u; 0 - 0 0

So, the matrix 3P = (£ has the following form:

€, Doo
B0 (’:;0 Do
(3.20) JP =yue = B G Do :
%2,0 ¢l

P1
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where the blocks Qfgj are (¢; — 1) x (¢; — 1) matrices, such that

0 1
(3.21) e ' E
0 -+ 0 1
—pi el

and the blocks D, 0, B,41,0 and B,y17 are (¢ —1) x 1, 1 x (¢; —1) and (¢; — 1) x 1
matrices, respectively

0 0
(3.22) Djo= 0 S Bo=(cw 0 o 0), By = 0 7
1 L
(323) €, =(0), ®ui=( 0 0 --- 0) arelx({;—1) matrices, j€Zy.

(74) In this part, we consider the case, when ¢5_1 > 2, {, = 1 and {41 > 2, k € N.
Then matrix J (®) has the following representation:

0
Q:p() @?70
B %0 Do,1

®) = yg = Bro ¢

(3.24) 3 L Do :
Brii1 &, Dio
Brio,1 C,‘SM Dir1,0
where
¢l Dr_11 [ 1

3.25 Pt 1) = :
(3.25) (‘Bkﬂ,l a —uple  —ug

(7i7) Next, we consider the case, when £;_1 > 2, 0, = ... = lpyp = 1 and lpypy1 > 2,
h,k € N. Then we have

¢, , D oot

—uple legp1 —ug 1
Bri1,1 ng

= —Upy1lpr1 —Wpy1
Dk+h—1,1 . . .

Birntr1 €
’ Pith U hlkrn —Ukthn

(iv) In this case, we suppose fg = --- =L =1 and lp1q1 > 2, k € Z. We obtain
L —u 1
ego @070 1 0
—uly bh—u
B, € _ ith lb—wy
1
Dy
% éol’o —Up—1lg—1 g —up—1 1
RO T —uply  —uy

So, we have shown J® = {I€ is a monic generalized Jacobi matrix. This completes
the proof. |
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o0
Remark 3.11. Let the moment sequence s®) = {55-’7 )} be associated with the matrix

=0
3. Let n; > 1 and ngp ) be the first nontrivial normal indexes of the moment sequences

s and s, respectively. Then

(3.26) nlP = —1.
Definition 3.12. Define a functional A& by the formula
(3.27) (AG)(p) :=6&(Ap(A)), p(A) is a polynomial .

Theorem 3.13. Let J be a monic generalized Jacobi matriz associated with the functional
G, such that (3.14) holds and let J = £4 be its £U—factorization of the form (3.1)-(3.3).
Then the matriz 3P = UL is associated with the functional

NS, ng>1
(p) _ ) 1 )
(3.28) S —{ 207G, = 1.

Proof. In this proof we follow the relations from [10] (see Section 4, Theorem 4.2). Note
that s; # 0 if n; = 1, see Remark 3.8. We divide the proof into two cases
(1) First of all, we consider the case, when n; > 1. We note that

(3.29) £l =eo, %o,;-1G0,-11€0 = €2, JEN,

where the shortened matrices £(o;_1), Ujo j—1] and Gjp;_1) are defined analogously
to (3.1) and (2.12). Calculating si, we get for j large enough

T
= (G[O,J’l] (Jfo,j—l]) 60,60)

= (€0, Ljo,j-11%0,j-1] - - - £(0,j—11¥[0,j—1] G[o,j—1]€0)

T
6()\]“) =5, = [(3{607]._1]) 60,60:|

€[20’|‘j71]

(3.30)

k times

= (£,5-1€0, 40,511 L(0,5-1] - - - Y05 110,-1) Y0,5-1] Glo,5-11€0)-

k—1 times

Let é[O,jJrn*l] be associated with the matrix 3fg)j+n_1],

such that €5 > 2, 0 < h < j — 1, as is defined by (2.12). Then é[o,j+n71]€0 = €ep,—2-
Substituting (3.29) into (3.30), we obtain

B e—1\T
st = (co, (o1 Z05-1)" " erp2) = (((‘7&%—11) > 607G[0,j+n1]€0>

E—1\ T
- l((ﬁfg,)ﬂn_u) ) 60,60] :s,@l = (A&) (A1) = &P Ak,

where n is the number of ¢,

o0
the moment sequence {s§p )} is associated with the matrix J»). By definition (3.27),
§=0
we obtain that functional A& is associated with matrix J® = Yg.
(74) Now we consider the case when n; = 1. We note that

(3.31) 2[7(;’3-_1]60 =eo, Ho;-1Go,j-11€0 = —Uo€o, JEN,

(P)
[0,j+n—1]
such that ¢, > 2, 0 < h < j — 1. The matrix Gy jin—1) is defined by (2.12). Then

Glo,j+n—1]€0 = €9. Calculating sy, from (3.16), (3.29) and (3.30), we get

Let @[o’jJrn,l] be associated with the matrix J where n is the number of ¢,
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T
Ey 51 ~( ) k—1 ~
(%) = 50 ((("[g,j+n1]) ) 607G[0,j+n1]€0>
T
_ 51 (~x» ot
= % [((J[O,j+n1]) ) €0, €0

(oo}
the moment sequence {5? )} is associated with the matrix J().

_ P _ Sl g(p)\k-1
505,6—1 S0 ( )7

2
é[o,ﬁj—u

j=0
Hence 5,?_)1 = &P\ = i—fl’)\G()\k’l) and consequently, the functional A& is
associated with the matrix J®) = €. This completes the proof. ]

Remark 3.14. The transformation & — &®) = \G& is called the Christoffel transforma-
tion of the functional &.

By Theorem 3.13 we have that the matrix 3P = (¢ is associated with the moment
sequence s(P) = {5j+1};io. Define a set A'(s()) of normal indices of the sequence s) by

s1 0 S
J
(3.33) N(s?) = {n;p) : dt(fg,) # 0}, where dl(fg,) = det
. . sn;p) o 5zn§p>—1
Proposition 3.15. Let N(s) be a set of normal indices associated with the monic gene-

ralized Jacobi matriz J and let J = L4 be its L8—factorization of the form (3.1)-(3.3).
Let

(_1)nj+2 51 snj
(3.34) ﬁj(()):di <o | #£0, foreach j€Z,.
nj 511]- Ce sznj—l
Then
(3.35) N(EP)=N(GE)U{ng —1:5eN L >2}.

Proof. (i) If n = n; for some j € N, i.e. n € N(s), then by (3.33) and (3.34) al¥ # 0.
Therefore

(3.36) N(s) CN(sP).

(i) Assume that n € N'(s®)\N(s). Then d{) # 0 and d, = 0 and by ([8], see
Lemma 5.1 [item 1]) dyy1 # 0. Therefore n+1 = n; for some j € N and thus n = n; — 1.
Moreover, £;_1 =n; —n;_; > 2. This proves that

(3.37) neNEP)N(s)={nj—1:5€N, ¢, >2}.
Conversely, if n =n; — 1 and ¢;_; > 2, then
do, , #0, du 41=0, - dy_1=0, dy #0
and hence nj —1 ¢ N (s). Assuming that dff_ll = 0 one obtain from ([8], see Lemma 5.1
[item 2]) that d,(f;.ll = 0, which contradicttho the inclusion (3.36). This completes the
proof. (|

Remark 3.16. Let N (s) and A'(s()) be sets of normal indices associated with the matrices
3= 2 and J®) = UL, respectively. If li_1=n;—n;_1>2 n9=0andj €N, then

(3.38) N(sP)={n, —1,n;,n5 —1,ny,...}.
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Remark 3.17. Let N'(s) and N (s?)) be sets of normal indices associated with the matrices
J = 24 and 3P = UL, respectively. If lj_1=n;—n;_1=1,n9=0andj €N, then
(3.39) N(s) = N(sP).

Proposition 3.18. Let J be a monic generalized Jacobi matriz satisfying (3.14) and let
J = L4 be its LU—factorization of the form (3.1)-(3.3). Let m(\) and mP) (\) be the
m—functions of matrices J and JP), respectively. Then

(p) _ Ampgi—1(A), > 1,
3.40 ) ) =
(3.40) o,jn-1) (M) { 2 (Mmp;—y(N) +50), m =1,

where n is the number of £; of matrix J, such that £; > 2 andi=0,7 — 1.

Proof. Let n be the number of ¢; > 2, where ¢ = 0,5 — 1 and let é[o’jJrn,l] be associated

with the matrix 3f§)j+n71]. It is defined by (2.12).

(7) Let n; > 1. Then s9 = 0, é[O,j—‘,—n—l]eO = ey,—2 and the equalities (3.29) hold.
Calculating

T -1 T T -1
mig,j-11(A) = A [(3[0,1‘1] - A) 60760} == [( 0,j-1] — ) ( 0.4-1] )‘) 60760}
—1 —1
051 (5%,%1]_)‘) 60’60] =S0+ [(3@1'1]_/\)

-1
(3[To,j_1] - A) €0a2[o,j—11ﬂ[o,j—1]G[0,j—1]60)

6073[0,j—1]€0:|

— -1
eos (L0,-1140,5-1) — A) S[o,j—l]efrz)

e0s £o,j-1] (Y0,5-11L0,j-1] — X)_1 eeo—z)

1
_ 5@ T A Gro =mV (A)
- [0,j+n—1] €0, &o,j4n—1]€0 | = Mg jyp1](A)-

(#4) Now we consider the case when n; = 1. Then é[o’j+n,1]eo = ¢g and the equalities
(3.31) hold. Computing

—1 —1
Amyg j-1)(A) = A |:(3,—[Z(;7j1] - A) 60,60} = 50+ [(3%(;,3'1]—)\) 60,3[0,3‘—1]60}

5 - —1
= —§0 + ;:) (607 (S[O,j—l]u[O,j—l] - )‘) 2[071'—1]60)

5 — -1
=50+ i (6’072[0,3‘—1] (Y4051 L10,5-11 = A) 60)

5 N T -t
= —So+ ;(1) (((Jfg,)ﬂnl]) - >‘> €0, G[07j+n—1]€0>

_ 51 (p)
= —§0 + o m[O,j+n_1]()\).

Thus, we have

()
Mg syn1(A) = . (Ampo,j—17(X) + s0) -

So, the formula (3.40) is proved. This competes the proof. O
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Theorem 3.19. Let J be a monic generalized Jacobi matriz satisfying (3.14) and let
J = LU be its LU—factorization of the form (8.1)-(3.3). Let JP) = UL be its Darboux
transformation and let

(3.41) FPPE(N) = APP (),

T
where PP (\) = (Pép)()\)’ pl(p)(/\), ) . Then

(») _ 1 Py, (0) .
Pnj—l(/\)_ X (Pnj(/\)_Pnj_l(O)Pnjl()\>> y J EN,

(3.42)

Proof. First of all, we introduce the following polynomials:

Pl (/\) )\PO ()‘)
: lo—1
Pay-1(Y ey
: | e m PO [ P = e P (V)
PP)()\) = Xup(,\) =5 Pay11(N) S APy, ()\)
Po,—1(N) Xa=1p ()
— n O
Poy(A) = w1 Py (V) Pa,(\) — p,,zéo;P ()
Therefore
FPPE(N) = APP)(N),
because
1 1 1
JPPW()) = USUTP(A) = LUTP(N) = A(FUP (V) = AP®()).
From here, we obtain that the polynomials Pi(p )(/\) can be represented by the for-
mula (3.42), for all ¢ € Z,. This completes the proof. a
Remark 3.20. If £; =1 for all j € Z, then
@y - L _ By (0)
(3.43) Pr’(N) = 3 (Pnjﬂ()\) Pa, (0) P, (N)

is a Christoffel formula (see [22]).

Remark 3.21. If at least one £; > 2, then the formula (3.42) is a special case of Christoffel
formula (see [22]).

Theorem 3.22. Let J be a monic generalized Jacobi matriz satisfying (3.14) and let
J = L4 be its LU~ factorization of the form (3.1)-(8.3). Let JP) = UL be its Darboux
transformation and let

(3.44) QAP =NQP () = 64,1,
where QP)(\) = (Qép)()\)7 QP M), .. .)T, ©¢-1=1(0,...,0,1,0...). Then
-1
Py, (0)

QY (N = Qu, () — 5

QY () = NHQu (N), 0<k<l—2 and jEZy.

(3.45)
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Proof. Setting
Q1()

X100 (A) (M)
Qni (N) = P25 Qo (N)
QP () = UQ(\) = )\in( )

X=1Qu, ()
Qna(N) = ”:jégiwm

Using (J — A)Q(A) = ©y,, we obtain
LU —N)Q(N) = (ULU — MHQ(N) = (UL — N)UQ(N)
=P = N)QP(\) = 4Oy, = O,—1.
So, the formula (3.45) is proved. This completes the proof. a

Definition 3.23. In the next theorem we use index x(a), a € N. It is defined by

(3.46) K(a) = { ) Z;

)

Proposition 3.24. LetJ and:j be monic generalized Jacobi matrices associated with the
functionals © and 6 'respectwely Let J = £31 be its L4U— factomzatzon of the form (8.1)-
(8.8). If k(£;) = /i(f ) po = p(j) and b1 = b]H, where po , bjt1 and pO , bJH are
elements of matrices 3 and 3, respectively, for all j € Z.,. Then P,Sf)(()) = Pﬁ(f)( ), where
P,Ef)()\) and P( )(/\) are polynomials of the first kind associated with the matrices J®)

and J(p) respectwely, for all j € Zy and ng = ng = 0.

Proof. By Proposition 3.9, J admits £4(—factorization of the form (3.1)~(3.3) and by
Theorem 3.10, the matrix J®) exists. Due to x({;) = /i(ﬁ ) for all j € Zy and using
Corollary 2.4, we have P,gf )(O) = Isﬁ(f )(0), where P,Ej)(/\) and Pﬁj (A) are polynomials of
the first kind associated with the matrices 3@ and 5 (P) | respectively, for all j € Z4 and
ng = np = 0. This completes the proof. O

4. DARBOUX TRANSFORMATION WITH A SHIFT

In this section we study the Darboux transformation with shift «, which may be
more comfortable for calculation. It helps us to construct factorization of GJM J, when
Py, (0) = 0 for some j € N.

Setting A := A+« in (2.4) and (2.5), we obtain the system of difference equations for
all j € Z4

(4.1) bjyn, (A ) =pi(A+ a)yn,( A+ ) +yn,,, (A +a) =0 (b = £o).
The solutions of the system (4.1) are polynomials P, (A+a) and Qu, (A+a). The system

(4.1) is associated with the following initial conditions:

(42) Po_,(A+a)=0, P,A+a)=1, Qu_,(A+a)=- Qu,(A+a)=0.

1
5707
Denote Py, (A) := Pa,(A+ @), Qn,(A) := Qu, (A + a) and p;(A) := p;(\ + ).
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Lemma 4.1. Let J be a GJM corresponding to the functional & and let
(4.3) A, = diag (Q:Po - &5 €y — & e ) ,

where €, and Qfgj are companion matrices associated with the polynomials p;(A) and
p;(N), respectively. Then the GIM J — A, corresponds to the functional

(4.4) S(p(\) == &(p(A — ).
If’s is a moment sequence associated with S via (1.1), then the corresponding set N'(5) of

~ o
normal indices coincides with N'(s) and {Pn]. ()\)} is the sequence of quasi - orthogonal
§=0

polynomaals with respect to S.

Proof. It follows from (2.7) and (4.3) that the matrix J — A, is the GJM,
Q:Eo Do
(4.5) J-A,=|B1 &G D

is associated with the sequence of polynomials p; and numbers b;. Thus, the system
(4.1) is associated with the matrix J — A,. Consequently, (4.4) holds and N (s) = N (5).

Due to ﬁnj (A) = Py, (A4 ) and (4.4), {Jgnj ()\)} - is the sequence of quasi - orthogonal
j=

j
polynomials with respect to &. This completes the proof. O

Note, if n; = 1, then 5o = 6(1) = &(1) =30 and Py, (\) = Po,(A+ ) = A+ a — o,
see Remark 3.8. On the other hand

(46) Pa=o [T 5 =22

therefore P,, (0) = fi—(l) = a — L. This implies 5; = §1 — aso.

Theorem 4.2. Let a € R be such that

(4.7) Po(a) #0, jeZi.

Then the GIM J — Ao admits the £U— factorization of the form (8.1)-(3.3)

(4.8) T=J—-A,=24

and the corresponding Darbouz transform TP) = UL corresponds to the functional
~ 2\G, ny > 1,

(4.9) 6™ = { a6, ni _

Furthermore, if ﬁg-p) and E;p)()\) are normal indices and generating polynomials of T®)

and

(4.10) AP) = diag (etpém ~ G, o — s ) ,

where QfE(p) and pr(p) are companion matrices associated with the polynomials ﬁ;p)()\) and
j j

p§p) \) = E§p)(A — a), respectively. Then

(4.11) I =4g+ AP

is a GJM corresponding to the functional

(4.12) G(”)(p(k))={ 50 gﬁﬁiiiiﬁﬁigi 2121

51 —QS0




316 I. KOVALYOV

Proof. By Theorem 3.5 T = J — A, admits £i—factorization of the form (3.1)—(3.3)
and by Theorem 3.10 T?) = (£ is the GIJM. The relation between functionals in (4.9)
follows from Theorem 3.13 and relation (4.12) follows from Lemma 4.1 and (4.9). O

Theorem 4.3. Suppose that the assumptions of Theorem 4.1 hold. Let Py, ()), Péﬁ?) (A)
and Qu,; (M), Q [()2,) (A\) be polynomials of the first and the second kind of matrices J and

n

3@ =gy 4 AP .), respectively. Then

P (N = L (Pnj (A) — Pulo) p (A)) , jEN,

(4.13) S A-a Py (o) V7
PP O) = MNP, (N), 0<k<(;-2 and jEZy.
P, ()
(p) " i
A)=Qn(\) — =—~Qn._,(\), eN,
(414) an—l( ) Q J( ) Pnj_l(a)Q J ( ) J
fojlk(A) =AHQu(\), 0<k<t;—2 and j€Z;.

Proof. The matrix J is associated with the system of difference equations (2.4). By
Lemma 4.1 T =J— A, = £l is associated with the system of difference equations (4.1)
and by Theorem 4.2 T®) = {(£ is associated with the following system of difference
equations for all j € Z

(4.15) Sy, (V) =B Wyn (V) + 1,00 V) =0 (7 = 7).

The solutions of the system (4.15) are polynomials PIEE’%)]()\) and Qfggjl(x\). By Theo-
rem 3.19 and Theorem 3.22

PP (N = % <Puj()\ +a)-— }%PMI()\ + a)) , jEN,
6 PPN =NPy (A +a), 0<k<f;—2 and j€Zy,
e QY () = Qu, (A +0a) — MQn,.,l(A +a), jeN,
" ’ Py (o) 7
QYN =XNQy (A +a), 0<k<f;—2 and j€EZy.

On the other hand, the matrix J = LIS—I—A((f ) is associated with the system of difference
equations for all j € Z

417) Py =) =P (A= a)yumA—a) +y,m A—a) =0 () =),
T IniTy J n; n®)
where the solutions of system (4.17) are polynomials

(4.18) P]f{;)) (W) :=PP (A—a) and QW) (A):= ang;) (A — a).
j—1 j—1 j—1 j—1

Substituting (4.18) into (4.16) we obtain (4.13) and (4.14). This completes the proof. O

5. EXAMPLE

5.1. Example 1. Recall that the class N_ consists of holomorphic functions F on C,,
such that ImF(X) > 0 for all A € C4 and F admits the following asymptotic expansion:
50 51 52n

1 —
(51) F(A)_A)\2'..)\2n+1+0<>\2n+1>’ A*)OO,
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with s; € R for all j € Z;, where A=~oco means that A tends to oo nontangentially, that
is inside the sector € < arg A < 7 — ¢ for some € > 0. Every function F' € N_,, admits
the J—fraction expansion
bo bO bl b2
5.2 F(A) ~— = e
( ) ( ) by A—cp  A—c1  A—cy—
A—cg— ———

b
)\761772

Next, we construct the function F'(A3) with the following asymptotic expansion:

3y _ S0 51 S52n _ S0 51 Son —
(5.3) F(X )77F,F..., T T T Ty T3 T e NS00,
where §3;_1 = s; and §; = 0 otherwise. The expansion (5.3) can be rewritten as the
P—fraction (see [17])

bo by b

5.4 FOO3) ~ — i
( ) ( ) )\37607/\37017)\37027

The function F(\3) is associated with the monic generalized Jacobi matrix J

Q:Po :DO
%1 Qpl @1
5.5 3= ,
(5.5) J B, ¢,
where
0 1 0 0 0 O 0 0 0
(5.6) ¢, =[0 0 1], ®;={0 0 0] and Bu=[ 0 0 0], jez,.
Cj 0 0 1 0 0 bj+1 0 0

Let us assume that the polynomials of the first kind P, ()) associated with the matrix
J do not vanish at a, i.e. Py, (a) # 0 for all j € Z,.
Next, we introduce the following diagonal block matrix:

(5.7) A, = diag (€, — €5

Po>? Q:pl_e'ﬁl, ...)7

where ng is a companion matrix of the monic polynomial
(5.8) Pi(A) = pi(A+a) =A% +3a\? + 3a% M + o + ¢

Then by Theorem 4.2 a GJM T = J — A, admits the Li-factorization (T = £i),
where

Ay 0 o :DO
(59) L= 21 2(1 and U= 0 ﬂl N

where the blocks 2;, ®;, £541, 4l; take the form (see (3.2)—(3.3))

1 00 00 0 000 0 10
(5.10) A;=| 0 1 0], £, =00 0 | D,=l000]), s,=( 0 0 1],
—30% —3a 1 00 —bix 100 —u; 0 0

Uy
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where —1p = ¢g — o and —u; — uf’il =¢; —a’, i €N, (see (3.6)). Then T = € and
E38 Do,0
Bio € Do
(5.11) T = ~ - |
%1}1 Cl .
where

so_( 0 1 {0 - 0
(5.12) Cj_(3a2 —3a )’ Djo = 1/ Bjt1,1 = _% ,

Biro=(-u 0), C=(0), D1=(1 0), jeZy.

Let Zi?, Ejl- be polynomials associated with the matrices &? and &;, respectively, i.e.
'd?()\) = A2 +3a) +3a? and 5}()0 = ), for all j € Z,. Let us introduce the polynomials
aj(N) == aj(A—a) =N+ ar+a? and a;(\) == aj(A —a) = A —a, j € Z,. Denote the
companion matrices of an, a} by

0 1 .
(5.13) ¢l = (_ag _a> and €} = (a), forall jeZ;
and let the matrix A%is given by
(5.14) AP = diag (¢ - &, ¢~ ).
Then the Darboux transformation of J with the shift « takes the form (see (4.11))
€, Doo
®) — 70 L AP Bro Gy Do
~(p) — i p) _
(5.15) JP =TV 4+ AP = B, €
By Theorem 4.2 see (4.12), the moment sequence s) = {55“} o is associated with
j=
the matrix J® and
(5.16) s = 6P (W) = S((A — a)N) = S(VT) — aB(M) =541 — aF;.
On the other hand, we can rewrite 5§-p ) as follows:
(517) 51(’;137) =0, 5?&?’1—1 = 5, ﬁi(’f;)—i-Q =—as;, j€ Ly.

Consequently, the function F(P)(\) associated with the matrix J) has the following
representation:

(5.18) FP(\) = (A= a)F(\%).

5.2. Example 2. This example is a special case of Example 1. We consider the monic
Chebyshev-Hermite polynomials {Hy(A)}?°, and study the Darboux transformation
with a shift of monic generalized Jacobi matrix J associated with {Hj(A3)}3° .

Let s = {s; }50:0 be a moment sequence corresponding to the measure et dt on R, i.e.
T
(5.19) S0 = /T, S35 = %(2]‘ - D! and s9;-1 =0, jeN.
Then the corresponding recurrence relation takes the form

k
(5.20) AH; () = Hya(N) + 5 Hya(N) for j €7y
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and the corresponding polynomials of the first kind coincide with the monic Chebyshev-
Hermite polynomials

(—1)j eX“ i
27 dN
where x € (—00,+00) and these polynomials are orthogonal in Lo(R,w(A)) with the
weight function w(\) = e=>".
Consider the sequence of polynomials {H j(/\g)};?‘;o which satisfy the recurrence rela-
tion

k
(5.22) NH;(N) = Hjp (V) + §Hj_1(A3) for je€Z,.

(5.21) H;(\) = (e_’\2) for all jeZ;,

The polynomials { H;(A*)}32, are polynomials of the first kind associated with the monic
generalized Jacobi matrix J defined by (5.5)—(5.6).

Then the moment sequence s = {s; }?’;0 associated with the matrix J takes the form
(523) ggj = g3j+1 =0, E3j+2 =5, j € Z+.

This GJM J does not admit the Darboux transformation of the form (3.1)-(3.3), since
H1(23) = A3 and hence the assumption (3.14) does not hold (H;(0) = 0). Let us choose
a € R such that
(5.24) Hi(0®) #0, jeZy
and let A, be a diagonal block matrix introduced in (5.7). Then the GIM J— A, admits
the factorization J — A, = £4 (5.9)—(5.10). Consider the Darboux transformation J®
of J with the shift «

(5.25) I — AP =g

determined by (5.11)—(5.15).
Using Example 1, consider the Darboux transformation of J with a shift «, we obtain
the matrix J® which is defined by (5.15).

By Theorem 4.3 the polynomials {Pj(p)()\)}oo of the first kind associated with the
§=0
matrix J(®) are given by
PP = Hy(A%), PN = AH;(A%),
1 H; i (« )
]H()Hj()\g)) , JEZy.

PPN = —— [ Hip (W) —
3]+2( ) \ — J+1( ) Hj(()()
Acknowledgments. The author thanks V. A. Derkach for many suggestions and obser-
vations.

(5.26)
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