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ACTIONS OF FINITE GROUPS AND SMOOTH FUNCTIONS ON
SURFACES

BOHDAN FESHCHENKO

Abstract. Let f : M → � be a Morse function on a smooth closed surface, V be a
connected component of some critical level of f , and EV be its atom. Let also S(f) be
a stabilizer of the function f under the right action of the group of diffeomorphisms
Diff(M) on the space of smooth functions on M, and SV (f) = {h ∈ S(f) |h(V ) = V }.
The group SV (f) acts on the set π0∂EV of connected components of the boundary
of EV . Therefore we have a homomorphism φ : S(f) → Aut(π0∂EV ). Let also
G = φ(S(f)) be the image of S(f) in Aut(π0∂EV ).

Suppose that the inclusion ∂EV ⊂ M \V induces a bijection π0∂EV → π0(M \V ).
Let H be a subgroup of G. We present a sufficient condition for existence of a section
s : H → SV (f) of the homomorphism φ, so, the action of H on ∂EV lifts to the
H-action on M by f -preserving diffeomorphisms of M .

This result holds for a larger class of smooth functions f : M → � having the
following property: for each critical point z of f the germ of f at z is smoothly
equivalent to a homogeneous polynomial �2 → � without multiple linear factors.

1. Introduction

Let M be a smooth compact surface. The group of diffeomorphisms D(M) of M acts
on the space of smooth functions C∞(M) by the rule

(1.1) C∞(M)×D(M)→ C∞(M), (f, h) = f ◦ h.
The set S(f) = {h ∈ D(M) | f ◦ h = f} is called the stabilizer of the function f under
action (1.1). Endow C∞(M) and D(M) with the corresponding Whitney topologies.
The topology on D(M) induces a certain topology on the stabilizer S(f).

Let F(M) ⊂ C∞(M,R) be the set of smooth functions satisfying the following two
conditions:

(B) the function f takes a constant value at each connected component of ∂M , and
all critical points of f belong to the interior of M ;

(P) for each critical point x of f the germ (f, x) of f at x is smoothly equivalent to
some homogeneous polynomial fx : R2 → R without multiple linear factors.

It is well-known that each homogeneous polynomial fx : R2 → R splits into a product
of linear and irreducible over R quadratic factors. Condition (P) means that

(1.2) fx =
n∏

i=1

Li ·
m∏

j=1

Q
qj

j ,

where Li(x, y) = aix + biy is a linear form, Qj = cjx
2 + djxy + ejy

2 is an irreducible
quadratic form such that Li/Li′ �= const for i �= i′, and Qj/Qj′ �= const for j �= j′. So, if
deg fx ≥ 2, then 0 is an isolated critical point of fx.
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Recall that if f : (C, 0) → (R, 0) is a germ of C∞-function such that 0 ∈ R2 is an
isolated critical point of f , then there is a germ of a homeomorphism h : (C, 0)→ (C, 0)
such that

fx ◦ h(z) =

{
±|z|2, if 0 is a local extremum, [4],
Re(zn), for some n ∈ N otherwise, [13].

If 0 is not a local extreme, then the number n does not depend of a particular choice of
h. In this case the point 0 will be called a generalized n-saddle, or simply an n-saddle.
The number n corresponds to the number of linear factors in (1.2). Examples of level
sets foliations near isolated critical points are given in Fig. 1.1.

aa b c

Figure 1.1. Level set foliations in neighborhoods of isolated points ((a)
local extreme, (b) 1-saddle, (c) 3-saddle)

Let Morse∂(M) be the space of Morse functions on M , which satisfy condition (B),
f ∈ Morse∂(M), and x be a critical point of f. Then, by Morse Lemma, there exists a
coordinate system (t, s) near x such that the function f has one of the following forms
f(s, t) = ±s2 ± t2, which are, obviously, homogeneous polynomials without multiple
factors. This implies that Morse∂(M) is a subspace of F(M).

Let f ∈ F(M) be a smooth function and c ∈ R be a real number. A connected
component C of the level set f−1(c) is called critical if it contains at least one critical
point, otherwise, C is called regular. Let Δ be a foliation ofM into connected components
of level sets of f. It is well-known that the quotient-space M/Δ has a structure of 1-
dimensional CW complex. The space M/Δ is called the Kronrod-Reeb graph, or simply,
KR-graph of f . We will denote it by Γf . Let pf : M → Γf be a projection of M onto
Γf . Then vertices of Γf correspond to connected components of critical level sets of the
function f.

It should be noted that the function f ∈ F(M) can be represented as the composition

f = φ ◦ pf : M
pf−−−→ Γf

φ′
−−→ R,

where φ′ is the map induced by f . Let h ∈ S(f). Then f ◦ h = f , and we have
h(f−1(t)) = f−1(t) for all t ∈ R. Hence h interchanges connected components of level
sets of the function f and therefore it induces an automorphism ρ(h) of KR-graph Γf

such that the following diagram is commutative:
In other words, we have a homomorphism ρ : S(f)→ Aut(Γf ). Let G = ρ(S(f)) be the
image of S(f) in Aut(Γf ). It is easy to show that the group G is finite.

Let v be a vertex of Γf and Gv = {g ∈ G | g(v) = v} be the stabilizer of v under the
action of G on Γf . An arbitrary connected closed Gv-invariant neighborhood of v in Γf

containing no other vertices of Γf will be called a star of v. We denote it by st(v).
The set Gloc

v = {g|st(v) | g ∈ G} which consists of restrictions of elements of Gv onto
the star st(v) is a subgroup of Aut(st(v)). This group will be called a local stabilizer of
v. Let also r : Gv → Gloc

v be the map defined by r(g) = g|st(v) for g ∈ Gv, i.e., r is the
restriction map.

Let v be a vertex of Γf , and V = p−1
f (v) be the corresponding connected component

of the critical level set f−1(pf (v)).
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Definition 1.1. A vertex v of the graph Γf will be called special if there is a bijection
between connected components of st(v) \ v and M \ V . The corresponding connected
component V = p−1

f (v) will be called special.

It follows from definition of KR-graph Γf that for a special vertex v there is a 1–1 cor-
respondence between connected components of complement to v in st(v) and connected
components of Γf \ v.

Note that a special component V gives a partition Ξ of the surface M whose 0-
dimensional elements are vertices of V, 1-dimensional elements are edges of V , and 2-
dimensional elements are connected components of complement of V in M. Since M is
compact, it follows that Ξ has a finite number of elements in each dimension.

2. Main result

Let f ∈ F(M). Suppose that its Kronrod-Reeb graph Γf contains a special vertex v,
and V be the special component of level set of f which corresponds to v.

Let SV (f) = {h ∈ S(f) | h(V ) = V } be a subgroup of S(f) leaving V invariant. It is
easy to see that ρ(SV (f)) ⊂ Gv. We denote by φ the map

φ = r ◦ ρ : SV (f)
ρ−−→ Gv

r−−→ Gloc
v .

Let H be a subgroup of Gloc
v and H = φ−1(H) be a subgroup of SV (f). We will say

that the group H has property (C) if the following conditions hold.
(C) Let h ∈ H, and E be a 2-dimensional element of Ξ. Suppose that h(E) = E.

Then h(e) = e for all other e ∈ Ξ, and the map h preserves orientation of each
element of Ξ.

Lemma 2.1. If H = φ−1(H) has property (C), then H acts on the set of all elements of
the partition Ξ. Moreover this action is free on the set of 2-dimensional elements of Ξ.

Proof. Let g ∈ H , and h ∈ H be a diffeomorphism such that φ(h) = g. Define the map
τ : H × Ξ→ Ξ by the following rule

τ(g, e) = h(e), e ∈ Ξ.

We claim that this definition does not depend of a particular choice of such h. Let
h1, h2 ∈ H be diffeomorphisms such that φ(h1) = φ(h2). Then φ(h1 ◦ h−1

2 ) = 1H , where
1H be the unit of H. By definition of the unit 1H , we have (h1 ◦h−1

2 )(E) = E for each 2-
dimensional component E of Ξ. Then, by condition (C), (h1◦h−1

2 )(e) = e for other e ∈ Ξ.
Hence h1(e) = h2(e). So, the map τ is well-defined. It is easy to see that τ(1H , e) = e,
where 1H is the unit of H, and τ(g1, τ(g2, e)) = τ(g1 ◦ g2, e) for each g1, g2 ∈ H, and
e ∈ Ξ. Thus τ is an H-action on Ξ.

Suppose h ∈ H is such that h(E) = E for some 2-dimensional component E of Ξ.
Then, by condition (C), h(E′) = E′ for each 2-dimensional component E′ of Ξ. Hence,
h = id, so the H-action on the set of 2-dimensional components of Ξ is free. �

Thus condition (C) implies that H <<combinatorially>> acts of M i.e., it ensures
invariance of the partition Ξ under the action of H on M. Our aim is to prove that in fact
this ¡¡combinatorial¿¿ action is induced by a real action of H on M by diffeomorphisms
preserving f .

Namely the following theorem holds.

Theorem 2.2. Suppose f ∈ F(M) is such that its KR-graph Γf contains a special vertex
v, and Gloc

v be the local stabilizer of v. Let also H be a subgroup of Gloc
v , and H = φ−1(H)

be a subgroup of SV (f) satisfying condition (C). Then there exists a section s : H → H
of the map φ, i.e., the map s is a homomorphism satisfying the condition φ ◦ s = idH .
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Group actions which have the property of invariance of some partition of the surfaces
are studied by Bolsinov and Fomenko [1], Brailov [2], Brailov and Kudryavtseva [3],
Kudryavtseva [5], Maksymenko [11], Kudryavtseva and Fomenko [6, 7].

2.3. Structure of the paper. In Section 3 we recall the definitions and statements that
will be used in the text. The topological structure of the atom EV,ε which corresponds
to V is described in Section 4. In section 5, we construct an H-action on the surface M.

3. Symmetries of homogeneous polynomials

Let fz : R2 → R be a homogeneous polynomial without multiple linear factors. Sup-
pose the origin 0 ∈ R2 is not a local extreme for fz. Let also L(fz) be a group of
orientation preserving linear automorphisms h : R2 → R2 such that fz ◦ h = fz. The
following lemma holds:

Lemma 3.1. ([10], Section 6). After some linear change of coordinates one can assume
that

(1) if deg fz = 2, then the group L(fz) consists of the linear transformations of the
following form

±
(
a 0
0 1

a

)
, a > 0,

see [10, Section 6, case (B)];
(2) if deg ≥ 3, then the group of L(fz) is a finite cyclic subgroup of SO(2), [10,

Section 6, case (E)].

We will also need the following lemma:

Lemma 3.2. ([10], Corollary 7.4). Let h : (R2, 0) → (R2, 0) be a germ of a diffeomor-
phism h : R2 → R2 at 0 ∈ R2, and T0h be its tangent map at 0 ∈ R2. If fz ◦ h = fz, then
fz ◦ T0h = fz.

Proof. For the sake of completeness we will recall a short proof from [10].
Assume that the polynomial fz is a homogeneous function of degree k, i.e., fz(tx) =

tkfz(x) for t ≥ 0 and x ∈ R2. Then

fz(x) =
fz(tx)
tk

=
fz(h(tx))

tk
= fz

(
h(tx)
t

)
−−−−→

t→0
(fz ◦ T0h)(x).

Lemma 3.2 is proved. �

4. Topological structure of the atom EV,a

Let f be a smooth function from F(M), ε1 > 0, c ∈ R, and V be a connected
component of some critical level f−1(c) of f .

Let also E be a connected component of f−1([c−ε1, c+ε1]), which contains V. Assume
that the boundary ∂E consists of n + k connected components Ai, i = 1, 2, . . . , n + k,

i.e., ∂E =
⋃n

i=1Ai ∪
⋃k

j=1 A−j . Since f ∈ F(M), it follows that f |E belongs to F(E),
and so, by (B), f |E takes a constant value at each connected component of the boundary
∂E . Assume that f(Ai) = ci ∈ [c, c+ ε1], i ≥ 1, and f(Ai) = di ∈ [c− ε1, c], i ≤ 1. Put
c′ = min{ci} and d′ = max{di}. Fix a > 0 such that [c− a, c+ a] ⊂ [d′, c′].

A connected component of f−1([c−a, c+a]), which contains V will be called an atom
of V and denoted by EV,a.

Let H be a subgroup of Gloc
v and H = φ−1(H) ⊂ SV (f). We will need the following

lemma.
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Lemma 4.1. Let EV,a be an atom of a special critical component V , A be a connected
component of ∂EV,a, and h ∈ H. Assume that the groupH has property (C). If h|EV,a(A) =
A, then h preserves the orientation of A.

Proof. Fix a Riemannian metric 〈·, ·〉 on M. Let ∇f be a gradient vector field of the
function f in this Riemannian metric. Let also Q be a set of points x ∈ A such that
there exists an integral curve cx of ∇f, which joins the point x with some point yx ∈ V.
Then Q is a union of open intervals in A, and the map ψ : Q → V , ψ(x) = yx is an
embedding. The image of ψ(Q) is a cycle in V. So, the connected component A of ∂EV,a

defines the cycle γA in V. Moreover the orientation of A induces the orientation of γA

and vice versa, see [12].
Assume that H has property (C). Let h ∈ H and E be a 2-dimensional element of Ξ

such that h(E) = E. Then by (C), h(e) = e for all other e ∈ Ξ. In particular h(γA) = γA

and h preserves orientation of γA. Then h(A) = A, and h preserves orientation of A.
�

5. Proof of Theorem 2.2

Suppose f ∈ F(M) is such that its KR-graph contains a special vertex v, V = p−1
f (v)

be the corresponding special component of some level set, which corresponds to v, and
Gloc

v be the local stabilizer of v.
Let H be a subgroup of Gloc

v such that H = φ−1(H) has property (C). We will
construct a lifting of the H-action on st(v) to the action Σ : H ×M → M of the group
H on the surface M.

By Lemma 2.1 there is an action σ0 : H × V → V of H on the set of vertices of V
defined by the rule:

σ0(g, z) = h(z),
where h ∈ H is any diffeomorphism such that φ(h) = g.

Step 1. Now we will extend the action σ0 to the H-action σ1 on the set of neighborhoods
of vertices of V. Assume that the action σ0 has s orbits Vr = {zr0, zr1, . . . , zr k(r)} for
some k(r) ∈ N, r = 1, 2, . . . , s, and let V =

⋃s
r=1 Vr be the union of vertices of V.

Then, by definition of the class F(M), for each r = 1, 2, . . . , s there exists a chart
(Ur0, qr0) which contains zr0 such that the map f ◦q−1

r0 = fr is a homogeneous polynomial
without multiple linear factors. We can also assume that qr0(Ur0) ⊂ R2 is a 2-disk with
the center at 0 ∈ R2 and radius ε, and the group L(fr) has the properties described in
Lemma 3.1. Fix any diffeomorphisms

(5.1) hri ∈ H such that hri(zr0) = zri, i = 1, 2, . . . , k(r),

and define charts (Uri, qri) for the points zri, i = 1, 2, . . . , k(r) in the following way:
• Uri = hri(Ur0);
• the map qri is defined from the diagram:

Ur0

qr0

��

hri �� Uri

qri�����
�
�
�
�
�
�

qr0(Ur0)

i.e., qri = qr0 ◦ h−1
ri .

Reducing ε, we can assume that Uri ∩ Urj = ∅ for i �= j.

Thus the chart (Uri, qri) is chosen so that the map f ◦q−1
ri : qr0(Ur0)→ R is a homoge-

neous polynomial without multiple linear factors which coincides with given polynomial
fr for the chart (Ur0, qr0). We also put Ur =

⋃k(r)
i=0 Uri, and U =

⋃s
r=1 Ur.
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Lemma 5.1. There exist a homomorphism λ1 : H → Diff(U) and a monomorphism
χ1 : H → Diff(U) such that the following diagram is commutative:

H λ1 ��

φ

��

Diff(U)

H

χ1

��
�
�
�
�
�
�
�
�
�
�
�
�
�

Proof. (1) First we construct a map λ1. Let h ∈ H be such that h(zri) = zrj for some
i, j = 0, 1, . . . k(r) and r = 1, 2, . . . , s. Let also γh = qrj ◦ h ◦ q−1

ri be a diffeomorphism of
qr0(Ur0). It is easy to see that the map γh preserves the polynomial fr. By Lemma 3.2
the tangent map T0γh also preserves the polynomial fr, so T0γh ∈ L(fr). Define a linear
map A ∈ L(fr) as follows: if deg fr = 2, then, by Lemma 3.1,

T0γh =
(
a 0
0 1

a

)
, a �= 0,

and we set

Ah = sign(a)
(

1, 0
0 1

)
.

If deg fz ≥ 3, then by assumption and Lemma 3.1, L(fz) is a cyclic subgroup of SO(2).
In this case we put

Ah = T0γh.

We define the diffeomorphism λ1(h) ∈ Diff(U) by the rule:

(5.2) λ1(h)|Uri = q−1
rj ◦Ah ◦ qri.

(2) Now we prove that the map λ1 is a homomorphism. Suppose h1, h2 ∈ H are such
that h(zri) = zrj and h(zrj) = zrk. By (5.2), we have

λ1(h1)|Uri = q−1
rj ◦Ah1 ◦ qri, λ1(h2)|Urj = q−1

rk ◦Ah2 ◦ qrj ,

and
λ1(h2)|Urj ◦ λ1(h1)|Uri = q−1

rk ◦Ah2 ◦Ah1 ◦ qri.

On the other hand, we have

λ1(h2 ◦ h1) = q−1
rk ◦Ah2◦h1 ◦ qri.

It follows from the definition of the linear map Ah, that Ah2◦h1 = Ah2 ◦Ah1 . Hence

λ1(h2 ◦ h1) = λ1(h2) ◦ λ1(h1).

So, the map λ1 is a homomorphism.
(3) Let g ∈ H and h ∈ H be such that φ(h) = g. Then we define the map χ1 : H →

Diff(U) by the rule
χ1(g) = λ1(h).

Obviously that χ1 is a homomorphism. It remains to prove that the map χ1 is a
monomorphism. It is sufficient to check that Kerχ1 = Kerψ, i.e., λ1(h) = idU iff h
trivially acts on the set of 2-dimensional elements of Ξ.

Suppose that h trivially acts on the set of 2-dimensional elements of Ξ. By condition
(C), h trivially acts on set of vertices and edges of V . Since h(zri) = zri for all i =
0, 1, . . . k(r) and r = 1, 2, . . . , s, it follows from (5.2) that λ1(h) = idU.

Suppose h ∈ H is such that λ1(h) = idU. Then h(e) = e for each edge e of V ,
and h preserves the orientation of e. Hence by Lemma 4.1, h leaves invariant each con-
nected component of ∂EV,a with its orientation. Therefore h trivially acts on the set of
2-dimensional elements of Ξ. �
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Let σ1 : H × U→ U be a map defined by the formula

σ1(g, x) = χ1(g)(x), x ∈ U.

Since χ1 is a homomorphism, it follows that σ1 is an H-action on U.

Step 2. In this step we extend the action σ1 to the H-action σ on the atom EV,a.
We start with some preliminaries. Let (Uri, qri) be the chart on M, which contains zri,
defined above. The projection map qri induces the map Tqri : TUri → Tqri(Uri) between
tangent bundles of Uri and qri(Uri) ⊂ R2. Fix a Riemannian metric 〈·, ·〉 on M such that
the following diagram is commutative

TUri
Tqri �� Tqri(Uri)

Uri

∇f |Uri

��

qri

�� qri(Uri)

∇fr |qri(Uri)

��

where ∇f and ∇fr are gradient fields of f and fr in Riemannian metrics on M and on
R2 respectively. Let also G be the flow of ∇f on M.

Another description of the diffeomorphism λ1(h). Let x ∈ Uri be a point, i =
0, 1, 2, . . . , k(r), r = 1, 2, . . . s, and y = λ1(h)(x) be its image under λ1(h). Let also
ωx and ωy be the trajectories of the gradient flow G such that x ∈ ωx and y ∈ ωy.
Since λ1(h) preserves trajectories of the flow G in U, it follows that λ1(h)(ωx ∩ Uri) =
ωy ∩ λ1(h)(Uri). By definition of λ1(h) we have that f(x) = f(y). In particular, if the
trajectory ωx intersects some edge R of V at some point x′, and y′ = λ1(h)(x′), then
y = f−1(f(x)) ∩ ωy′ , where ωy′ is the trajectory of G, which passes through the point
y′. Namely the image of x is uniquely defined by the image of the point x′.

By Lemma 2.1, the group H acts on the set of all edges R of V . Assume that this
action has u orbits Rr = {Rr0, Rr1, . . . Rr n(u)} for some n(u) ∈ N and r = 1, 2, . . . , u.
We also put R =

⋃u
r=1 Rr. For each edge Rri fix

(I) a C∞-diffeomorphism �ri : (−1, 1)→ Rri such that restrictions �ri|(−1,−1+ε) and
�ri|(1−ε,1) are isometries,

where ε is the radius of the disk qr0(Ur0) defined in Step 1.

Lemma 5.2. There exist a homomorphism λ2 : H → Diff(EV,a) and a monomorphism
χ2 : H → Diff(EV,a) such that the following diagram is commutative:

H λ2 ��

φ

��

Diff(EV,a)

H

χ2

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

and λ2(h)|U = λ1(h)|U∩EV,a .

Proof. Let h ∈ H. We will extend the diffeomorphism λ1(h) to a diffeomorphism λ2(h)
of the atom EV,a. Let x ∈ EV,a be any point. If x ∈ Uri for some i = 0, 1, . . . k(r),
r = 1, 2, . . . s, then we put λ2(h)(x) := λ1(h)(x).

Suppose that x �∈ U. Let ωx be a trajectory of the flow G passing through the point
x. Then we have one of the following two cases: the trajectory ωx either

(1) intersects some edge R of V at a point, say y, or
(2) converges to some vertex z of V .
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In the case (1) let R′ = h(R), � : (−1, 1)→ R and �′ : (−1, 1)→ R′ be maps, defined
by (I) for R and R′ respectively, and

h′ = �′ ◦ �−1 : R �−1−−−→ (−1, 1) �′−−→ R′.

Let also y′ = h′(y) ∈ R′, ωy′ be the trajectory of G, which passes through y′, and x′ be
a unique point in ωy′ such that f(x) = f(x′). Then we put λ2(h)(x) = x′.

Consider the case (2). Let U be the neighborhood of z, defined in Step 1, z′ = λ1(h)(z)
be the corresponding point in U ′ = λ1(h)(U), ωz′ be the trajectory of G such that
ωz′ ∩ U ′ = λ1(h)(ωx ∩ U), and x′ be a unique point in ωz′ such that f(x) = f(x′). In
this case we define λ2(h) by the rule: λ2(h)(x) = x′.

By definition λ2(h)|U = λ1(h)|U∩EV,a . Let χ2 : H → Diff(EV,a) be the map defined as
follows: for g ∈ H and h ∈ H such that φ(h) = g, we put χ2(g) = λ2(h). It is easy to
check that the map λ2 is a homomorphism. Moreover λ2(h) = idEV,a iff λ1(h) = idU.
Therefore χ2 is a monomorphism. �

Define the map σ : H × EV,a → EV,a by the rule

σ(g, x) = χ2(g)(x).

Since χ2 is the homomorphism, it follows that the map σ is an H-action on the atom
EV,a.

Step 3. In this step we extend the H-action σ on the atom EV,a to the H-action on the
surface M. We start with some preliminaries. Let E be a set of 2-dimensional elements
of Ξ. By Lemma 2.1 the group H acts on the set E. Assume that this action has y
orbits Er = {Er0, Er1, . . . , Er k(r)}, i = 0, 1, . . . , k(r), and r = 1, 2, . . . y. We also put
E =

⋃y
r=1 Er. Fix diffeomorphisms hri ∈ H such that hri(Er0) = Eri.

Let Yr = Er0 ∩ f−1([−a,−a/2]∪ [a/2, a]) ∩ EV,a. Since v is a special vertex, it follows
that the set Yr is a cylinder. We put Yri = hri(Yr), and Y =

⋃y
r=1

⋃k(r)
i=0 Yri.

We choose a1 > a such that the set EV,a1 is also an atom of V . Let

Zr = Er0 ∩ f−1([−a1, a/2] ∪ [a/2, a1]) ∩ EV,a1 .

By definition, we have that Yr ⊂ Zr, and Zr does not contain critical points of f . We
also put Zri = hri(Yr) and Z =

⋃y
r=1

⋃k(r)
i=0 Zri.

Yr
rZ

E

Figure 5.1. The 2-dimensional component Er0, and its subsets Yr and Zr.

Fix a vector field F on Z such that its orbits coincide with connected components of
level sets of the restriction f |Z , and let F be the flow of F. Then for each smooth function
α ∈ C∞(M) we can define the following map

Fα : M →M, Fα(x) = F(x, α(x)).

Such maps have been studied in [8].
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Since all orbits of F are closed, it follows from [8, Theorem 19] that the map Fα is a
diffeomorphism, iff the Lie derivative Fα of α along F satisfies the condition: Fα > −1.
Moreover we have that (Fα)−1 = Fξ, where

(5.3) ξ = −α ◦ F−1
α .

Lemma 5.3. For each g ∈ H the map χ2(g) extends to a diffeomorphism Σ(g) ∈ S(f),
so that the correspondence g 
→ Σ(g) is a homomorphism Σ : H → S(f).

Proof. We will need the following two lemmas.

Lemma 5.4. Let g ∈ H and h ∈ H be such that φ(h) = g, and h(Er0) = Eri. Then
there exists a unique C∞-function ξri : Yr → R such that

χ2(g)|Yr = hri|Yr ◦ Fξri : Yr → Yr.

In particular, the function ξri depends only on g.

Lemma 5.5. The diffeomorphism Fξri extends to a diffeomorphism wri : Er0 → Er0

such that f ◦ wri = f on Er0.

We prove Lemma 5.4 and Lemma 5.5 bellow, and now we will complete Theorem 2.2.
Define a diffeomorphism h̃ri : Er0 → Eri by the formula:

h̃ri = hri ◦ wri.

Let h ∈ H. Define the diffeomorphism λ3(h) by the rule: if h(Eri) = Erj , then

λ3(h)|Eri = h̃rj ◦ h̃−1
ri : Eri

h̃−1
ri−−−−→ Er0

h̃rj−−−→ Erj .

It follows from Lemma 5.5 that λ3(h) coincides with λ2(h) on Y.
Now we will check that the correspondence h 
→ λ3(h) is a homomorphism. Let

h1 and h2 be homeomorphisms from H such that h1(Eri) = Erj and h2(Erj) = Erk.

By definition λ3(h1)|Eri = h̃rj ◦ h̃−1
ri , and λ3(h2)|Erj = h̃rk ◦ h̃−1

rj . Then λ3(h2)|Erj ◦
λ3(h1)|Eri = h̃rk ◦ h̃−1

rj ◦ h̃rj ◦ h̃−1
ri = h̃rk ◦ h̃−1

ri = λ3(h2 ◦ h1)|Eri . Hence, the map λ3 is a
homomorphism.

Let g ∈ H , and h ∈ H be such that φ(h) = g. By condition (C), λ3(h) = id iff
h(Eri) = Eri for some r = 1, 2, . . . y, and i = 0, 1, . . . k(r). So the map χ3 : H → Diff(E),
defined by χ3(g) = λ3(h), is a monomorphism.

Let σ′ : H × E→ E be the map given by the formula

σ′(g, x) = χ3(g)(x), x ∈ E.

Since χ3 is a homomorphism, it follows that σ′ is an H-action on E.
Hence, we define an H-action Σ : H ×M →M on M by the rule:

Σ =

{
σ′, on H × E,

σ, on H × EV,a.

Theorem 2.2 is proved. �

Proof of Lemma 5.4. Due to [9, Lemma 4.12.], for the diffeomorphism h′ri =
χ−1

2 (g)|Yri ◦ hri|Yr : Yr → Yr of the cylinder there exists a smooth function αri such
that h′ri = Fαri whenever for each trajectory ω of F we have that h′ri(ω) = ω and h′ri

preserves orientation of ω.
Let ω be a trajectory of F. It follows from condition (C) that ω = f−1(t) ∩ Yr for

some t ∈ R. The sets f−1(t) and Yr are h′ri-invariant, so the set f−1(t) ∩ Yr is also
h′ri-invariant. Hence, h′ri(ω) = ω for all trajectories of F. Moreover, by Lemma 4.1, h′ri

preserves orientations of each orbit ω of F. Thus h′ri = Fαri , and due to (5.3) we put
ξri = −αri ◦ F−1

αri
. Lemma is proved.
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Proof of Lemma 5.5. By the result of Seeley [14], the function ξri extends to some
smooth function β′

ri on Eri. It is easy to construct a function δr ∈ C∞(Er0, [0, 1]) which
satisfies the following conditions:

(1) δr = 1 on Yr,
(2) δr = 0 on some neighborhood of Zr ∩ (f−1(−a1) ∪ f−1(a1)).
(3) Fδr = 0, i.e., δr is constant along orbits of F,
(4) the function βri = δrβ

′
ri, i = 1, 2, . . . , n satisfies the inequality Fβri|Zr > −1.

Indeed, since β′
ri = ξri on Yri and Fαri is a diffeomorphism, it follows that Fβ′

ri > −1 on
Yri. Then there exists b ∈ (a, a1) such that Fβ′

ri > −1 on Ar = Er0 ∩ f−1([−b,−a/2] ∪
[a/2, b])∩EV,a. Let δr : Er0 → [0, 1] be a smooth function such that δr = 1 on Yr, δr = 0
on Er0 \ Ar, and Fδr = 0. Then δFβ′

ri > −1 on Eri. Now the required diffeomorphism
wri : Er0 → Er0 can be defined by the formula

wri(x) =

{
Fβri , x ∈ Zr,

x, x ∈ Er0 \ Zr.

Lemma is proved.
Acknowledgments. The author is grateful to Sergiy Maksymenko and Eugene Polu-

lyakh for useful discussions.

References

1. A. V. Bolsinov and A. T. Fomenko, Some actual unsolved problems in topology of integrable

Hamiltonian systems, Topological classification in theory of Hamiltonian systems, Factorial,
Moscow, 1999, pp. 5–23. (Russian)

2. Yu. Brailov, Algebraic properties of symmetries of atoms, Topological classification in theory
of Hamiltonian systems, Factorial, Moscow, 1999, pp. 24–40. (Russian)

3. Yu. A. Brailov and E. A. Kudryavtseva, Stable topological nonconjugacy of Hamiltonian systems
on two-dimensional surfaces, Moscow Univ. Math. Bull. 54 (1999), no. 2, 20–27.

4. E. N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities, J. Reine
Angew. Math. 350 (1984), 1–22.

5. E. A. Kudryavtseva, Realization of smooth functions on surfaces as height functions, Mat. Sb.
190 (1999), no. 3, 29–88.

6. E. A. Kudryavtseva and A. T. Fomenko, Symmetry groups of nice Morse functions on surfaces,
Dokl. Akad. Nauk 446 (2012), no. 6, 615–617.

7. E. A. Kudryavtseva and A. T. Fomenko, Each finite group is a symmetry group of some map
(an “Atom”-bifurcation), Moscow Univ. Math. Bull. 68 (2013), no. 3, 148–155.

8. Sergey Maksymenko, Smooth shifts along trajectories of flows, Topology Appl. 130 (2003),
no. 2, 183–204.

9. Sergiy Maksymenko, Homotopy types of stabilizers and orbits of Morse functions on surfaces,
Ann. Global Anal. Geom. 29 (2006), no. 3, 241–285.

10. Sergiy Maksymenko, Connected components of partition preserving diffeomorphisms, Methods
Funct. Anal. Topology 15 (2009), no. 3, 264–279.

11. Sergiy Maksymenko, Deformations of functions on surfaces by isotopic to the identity diffeo-
morphisms, arXiv:math/1311.3347, 2013.

12. A. A. Oshemkov, Morse functions on two-dimensional surfaces. Coding of singularities, Trudy
Mat. Inst. Steklov. 205 (1994), no. Novye Rezult. v Teor. Topol. Klassif. Integr. Sistem, 131–
140.

13. A. O. Prishlyak, Topological equivalence of smooth functions with isolated critical points on a
closed surface, Topology Appl. 119 (2002), no. 3, 257–267.

14. R. T. Seeley, Extension of C∞ functions defined in a half space, Proc. Amer. Math. Soc. 15
(1964), 625–626.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka,

Kyiv, 01601, Ukraine

E-mail address: fb@imath.kiev.ua

Received 20/05/2016


