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AUTOMORPHISMS OF KRONROD-REEB GRAPHS OF MORSE

FUNCTIONS ON 2-TORUS

ANNA KRAVCHENKO AND BOHDAN FESHCHENKO

Abstract. This paper is devoted to a study of special subgroups of automorphism

groups of Kronrod-Reeb graphs of Morse functions on 2-torus T 2 which arise from
actions of diffeomorphisms preserving a given Morse function on T 2. In this paper
we give a full description of such classes of groups.

1. Introduction

Topological graphs naturally arise from a study of smooth functions on smooth mani-
folds as powerful tools which contain “combinatorial” information about a given smooth
function and hence the information about the topology of the smooth manifolds. Kronrod-
Reeb graphs of Morse functions on compact manifolds, named after G. Reeb by R. Thom
and after A. Kronrod by V. Sharko are famous examples of such graphs. They were stud-
ied by many authors. E.g. the problem of realization of a graph as a Kronrod-Reeb graph
of a Morse (in general smooth) function on a given smooth compact manifold was pro-
posed by V. Sharko and were studied in the papers of V. Sharko [31], Y. Masumoto and
O. Saeki [24],  L. Michalak [26], K. Cole-McLaughlin et al [1], M. Kaluba, W. Marzantow-
icz, N. Silva [7] and others. This problem is closely related to another important problem
of topological conjugacy for Morse functions on smooth manifolds, see e.g. E. Kulinich
[14], V. Sharko [30], D. Lychak and O. Prishlyak [15]. E. Polulyakh in [27, 28] has gen-
eralized the notion of the Kronrod-Reeb “graph” for functions on non-compact surfaces.

Homotopy properties of Morse functions on smooth surfaces were studied by V. Sharko
[29], H. Zieschang, S. Matveev, E. Kudryavtseva [11], K. Ikegami and O. Saeki [5],
B. Kalmar [6], S. Maksymenko. We give a short overview of the results of S. Maksymenko
[17, 18, 19, 20, 21] and E. Kudryavtseva devoted to a study of homotopy properties of
orbits and stabilizers of smooth functions on compact surfaces under the action of their
diffeomorphism groups. We will see that special subgroups of the automorphism groups
of Kronrod-Reeb graphs play an essential role in the description of homotopy types of
these spaces.

Let M be a smooth compact surface and X be a closed (possibly empty) subset of M .
The diffeomorphisms group D(M,X) acts on the space of smooth functions C∞(M) by
the rule: C∞(M)×D(M,X) → C∞(M), (f, h) 7→ f ◦h. Under this action we denote by

S(f,X) = {h ∈ D(M,X) | f ◦ h = f}, O(f,X) = {f ◦ h |h ∈ D(M,X)}

the stabilizer and the orbit of f ∈ C∞(M). Endow C∞(M) and D(M,X) with strong
Whitney topologies; for a fixed f ∈ C∞(M) these topologies induce some topologies
on S(f,X) and O(f,X). By Did(M,X), Sid(f,X), and Of (f,X) we denote connected
components of the identity map idM of D(M,X), S(f,X), and the component of O(f,X)
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which contains f , respectively. If X = ∅ we put D(M) := D(M,∅), S(f) := S(f,∅),
O(f) := O(f,∅), and so on.

In this paper we will consider Kronrod-Reeb graphs of Morse functions on smooth
compact surfaces. Since these surfaces may have boundary, we need to specify what will
be meant by a Morse function. By a Morse function f on a surface M we will mean a
smooth function f ∈ C∞(M) on a surface M such that f takes constant values on the
connected components of the boundary ∂M and each critical point of f is non-degenerate
and is contained in Int(M). A Morse function f on M is called simple if every critical
connected component of every critical level set contains a unique critical point, and f is
called generic if each level-set of f contains no more than one critical point.

S. Maksymenko, [17, 18, 19, 20, 21], showed that if f has at least one saddle point,
then πnOf (f) = πnM for n ≥ 3, π2Of (f) = 0, and for π1Of (f) there is a short exact
sequence

(1) 1 // π1Did(M) ⊕ Z
k // π1Of (f) // G(f) // 1

for some k ≥ 0 and a finite group G(f) which is a group of automorphisms of a Kronrod-
Reeb graph of f induced by isotopic to idM and f -preserving diffeomorphisms, i.e.,
diffeomorphisms from S ′(f) = S(f) ∩ Did(M). Moreover if f is generic, then the group
G(f) is trivial, and Of (f) is homotopy equivalent to (S1)m if M 6= S2 and M 6= RP 2, to
S2 if M = S2 and f have only two critical points, and to SO(3) × (S1)m otherwise, for
some m ≥ 0 depending on f . E. Kudryavtseva [12, 13] calculated the homotopy types of
connected components of the space of Morse functions on compact surfaces, and extend
the result about homotopy type of Of (f) when G(f) is non-trivial. She showed that
the space Of (f) is homotopy equivalent to the following quotient-spaces (S1)m/G(f) if
M 6= S2, and to SO(3) × (S1)m/G(f) otherwise, where G(f) freely acts on (S1)m, and
the number m is the rank of the Abelian group π1Did(M)⊕Z

k, see (1). Note that G(f)
is the holonomy group of the compact manifold (S1)m/G(f).

An algebraic structure of π1Of (f) for the Morse functions on 2-torus was described
in the series of papers by S. Maksymenko and the second author [23, 16, 22, 4]. This
is one of non-trivial cases since Did(T 2) is not contractible, so the image π1Did(T 2) in
π1Of (f) has non-trivial impact on the algebraic structure of π1Of (f), see (1).

Since groups G(f) play the essential role in the description of homotopy types of Of (f)
S. Maksymenko and A. Kravchenko [10] studied classes of such groups and their subsets.
Let G (M) be the minimal set of isomorphisms classes of groups G(f) for all Morse
functions f on M . By G smp(M) and G gen(M) will be denoted subclasses of G (M) which
correspond to classes of isomorphisms of groups G(f) for all simple and generic Morse
functions on M respectively. The first author and S. Maksymenko gave a full algebraic
description of classes G (M) and G smp(M) for all compact oriented surfaces M which are
distinct from 2-sphere S2 and 2-torus T 2, and proved that the class G gen(M) is trivial,
i.e., contains only trivial group {1} for all compact oriented surfaces M , see Theorem 2.2,
or [10]. We also mention that an algebraic structure of G(f) for Morse function on S2

is partially understood [8], and in general this case is more complicated than the case
of Morse functions on compact surfaces of genus ≥ 1. Recently S. Maksymenko and
A. Kravchenko [9] described special subgroups of G(f) for Morse functions on S2.

The aim of this paper is to extend the result of [10] by giving a full description of the

classes G (T 2) and G smp(T 2) for a Morse functions on 2-torus.

1.1. Conventions and notations. To state our main result we need the notion of
wreath products of groups with cyclic groups. So we recall these definitions. Let G be
a group, m,n ≥ 1 be integers. Consider two effective actions α : Gn × Zn → Gn, and
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β : Gnm×(Zn×Zm) → Gnm of Zn and Zn×Zmn on Gn and Gnm given by the formulas:

α((gi)
n−1
i=0 , a) = (gi+a)n−1

i=0 , β((gi,j)
n−1,m−1
i,j=0 , (b, c)) = (gi+b,j+c)

n−1,m−1
i,j=0

where all indexes are taken modulo n and n,m respectively. With respect to these actions
semi-direct products G ≀ Zn := Gn

⋊α Zn and G ≀ (Zn × Zm) := Gnm
⋊β (Zn × Zm) will

be called wreath products of G with Zn and G with (Zn×Zm) respectively. More general
definition the reader can find in the book [25].

1.2. Structure of the paper. Section 2 is devoted to out main result – Theorem 2.5.
Sections 3 and 4 include some preliminary facts about automorphisms of graphs of Morse
functions on surfaces, and “combinatorial” structure of such functions on 2-torus. The
proof of Theorem 2.5 is contained in Section 5.

2. Main result

2.1. The class P. First we recall the main result of [10]. For n ∈ N, let Pn be a minimal
set of isomorphism classes of groups which satisfies the following two conditions:

(1) the unit group {1} belongs to P,
(2) groups A×B and A ≀ Zn belong to P whenever A,B ∈ P, and n ∈ N.

Let also P be a minimal set of isomorphism classes of groups which contains Pn as a set
for each n ∈ N. The following theorem gives the description of classes G (M), G smp(M)
and G gen(M) for all compact surfaces M 6= S2, T 2.

Theorem 2.2 (Theorem 1.4 [10]). For each compact oriented surface M 6= S2, T 2,

G (M) = P, and G smp(M) = P2. For all compact oriented surface G gen(M) = {1}.

2.3. Classes of groups E0, E1 and E2. To describe classes G (T 2) and G smp(T 2) we
introduce three classes E0, E1 and E2 in the following way. Let Ei be a minimal set of
isomorphism classes of groups such that

• E0 contains the group A0 ≀ (Zn × Zmn), n,m ≥ 1 for each A0 ∈ P,
• E1 contains the group A1 ≀ Zn, n ≥ 1 for each A1 ∈ P,
• E2 contains the group A2 ≀ Zn, n ≥ 1 for each A2 ∈ P2.

Remark 2.4. Note that the group (A ≀ Z2) × (B ≀ Z3) where A,B ∈ P belongs to E1
since it is isomorphic to the group ((A ≀ Z2) × (B ≀ Z3)) ≀ Z1. So classes P and E1 in
general coincide, but we will consider the class E1 due to the convenience of a unique
presentation of a group G ∈ E1 in the form G = H ≀ Zn for some n ≥ 1 and H ∈ P.

It is well known that the Kronrod-Reeb graph of Morse functions on 2-torus is either
a tree or contains a unique circuit, see Lemma 3.1 in [3]. The class of groups G(f) for
Morse functions f on T 2 whose graphs are trees we will denote by G0(T 2), otherwise, in
the case of circuits, by G1(T 2)1. The following theorem is our main result.

Theorem 2.5. The following classes coincide:

G0(T 2) = E0, G1(T 2) = E1, G
gen(T 2) = E2.

We prove Theorem 2.5 in Section 5. The proof is divided into three separate cases:
for G0(T 2), G1(T 2) and G gen(T 2).

1Here indexes 0 and 1 correspond to the rank of H1(Γf ,Z)
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3. Automorphisms of graphs of functions on surfaces

In this section we want to show a precise way how the group G(f) arises from the
action of S ′(f) = S(f) ∩ Did(M) on M . Let f : M → R be a Morse function on smooth
oriented surface M , and c be a real number. A connected component C of the level-set
f−1(c) is called critical, if C contains at least one critical point of f , otherwise C is called
regular. Let ∆ be a partition of M into connected components of level-sets of f . It is
well known that the quotient-space Γf = M/∆ has a structure of an 1-dimensional CW
complex called a Kronrod-Reeb graph of f . For simplicity we will call it a graph of f .
Let also pf : M → Γf be a projection map. Then f can be presented as the composition:

f = f̂ ◦ pf : M
pf

−→ Γf
f̂

−→ R. Denote by Aut(Γf ) the group of homeomorphisms of the
graph Γf . Note that each h ∈ S ′(f) preserves level-sets of f . Hence, h ∈ S ′(f) induces
the homeomorphism ρ(h) of Γf such that the following diagram

M
pf

//

h

��

Γf

f̂
//

ρ(h)

��

R

M
pf

// Γf

f̂
// R

commutes, and the correspondence h 7→ ρ(h) is a homeomorphism ρ : S ′(f) → Aut(Γf ).
The image ρ(S ′(f)) is a finite group in Aut(Γf ); we will denote it by G(f).

4. Combinatorial generalities on Morse functions on 2-torus and their

graphs

We are interested in the “combinatorial” structure of Morse functions on T 2, so we
will recollect some useful for us results on the structure of such functions. The following
lemma holds.

Lemma 4.1 (Lemma 3.1 [3]). Let f be a Morse function on T 2 and Γf be its graph.

Then Γf is either a tree or contains a unique circuit.

We describe these two cases separately.

4.2. Γf contains a circuit. Let Θ be a circuit in Γf . Let C0 ⊂ T 2 be a regular connected
component of some level set f−1(c), c ∈ R, and z be a point in Γf corresponding to C0.
Obviously, z belongs to the cycle Θ in Γf , iff C0 does not separate T 2. Note that the
level-set f−1(c) consists of a finite number of connected components, and is invariant
under the action of any h ∈ S ′(f). Let C be the set {h(C0) |h ∈ S ′(f)} of all images of
C0 under the action of elements from S ′(f). Then the set C consists of a finite number
of components {C0, C1, . . . , Cn−1} of the set f−1(c) for some n ≥ 1. Curves from C are
pairwise disjoint, and since C0 does not separate T 2, it follows that each Ci also does not
separate T 2. We can reorder the index set so that Ci and Ci+1 bound a cylinder Qi such
that the interior of Qi does not intersects with C. Note that the group Zn freely acts on
the set of cylinders {Qi} by cyclic permutations. More about combinatorial description
of Morse functions on 2-torus whose graphs contain circuits the reader can find in [23, 22].

4.3. Γf is a tree. Let f be a Morse function on T 2 with Γf which is a tree. Then by [4,
Theorem 2.5] there exists a unique vertex v ∈ Γf such that each connected component

of T 2 − p−1
f (v) is an open 2-disk. Such vertex v of Γf and the connected component

V = p−1
f (v) of the corresponding to v critical level-set of f will be called special. Note

that the topological structure of the atom of V , i.e., a regular neighborhood of V which
consists of connected components of level-set of f and does not contain other critical
points of f , is well understood [2].
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Next we describe a special subgroup of G(f) which plays an important role in an
algebraic description of G(f). The group G(f) acts on the graph Γf , and we let Gv be a
stabilizer of v with respect to this G-action on Γf . The set Gloc

v = {g|st(v) | g ∈ Gv} which
contains restrictions of elements of Gv onto the star st(v) is a subgroup of Aut(st(v)),
we will call it a local stabilizer of v. It is well known that the group Gloc

v is isomorphic
to the product Zn ×Zmn for some n,m ≥ 1, see [4, Theorem 2.5]. More information the
reader can find in [2, 16].

4.4. Algebraic structure of G(f). It turns out that the combinatorial information
from the subsections 4.2 and 4.3 is enough to describe an algebraic structure of the
groups G(f) for Morse functions on T 2.

Lemma 4.5 (Theorem 3.2 [3]). Let f be a Morse function on T 2, and Γf be its graph.

(1) If Γf contains a unique circle, then the group Zn acts on the set of cylinders

{Qi}
n−1
i=0 by cyclic permutations and there is an isomorphism G(f) = G(f |Q0

)≀Zn,

where n is a cyclic index of f ,and Q0 is a cylinder bounded by parallel curves C0

and C1.

(2) If Γf is a tree, then there exists a special vertex v in Γf . Let also V = p−1
f (v)

be a special component of critical level set of f which corresponds to v and N
be an atom of V . Moreover the group Gloc

v freely acts by diffeomorphisms from

S ′(f) on T 2, this action induces a free action of Gloc
v on connected components of

T 2 −N , and so there exists a set of 2-disks {D0, D1, . . . , Dr} such that G(f) =∏r
i=0 G(f |Di

) ≀Gloc
v , where r is a number of orbits of free G-action on T 2.

4.6. Morse equality. We would like to recall the relationship between Euler charac-
teristic of the surface and Morse function defined on it. This connection is given by
the outstanding Morse equality – it is an important ingredient needed for the proof of
Theorem 2.5.

Theorem 4.7 (Morse equality). Let f be a Morse function on smooth compact and

oriented surface M without boundary and let ci(f) be a number of critical points of f of

index i, i = 0, 1, 2. Then the following equality holds

χ(M) = c0(f) − c1(f) + c2(f).

It is well known that χ(T 2) = 0, so Morse equality for a Morse function f on T 2 has
the form: c0(f) + c2(f) = c1(f).

5. Proof of Theorem 2.5

Obviously the inclusion Gi(T
2) →֒ Ei for i = 0, 1 directly follows from Lemma 4.5

because of the structure of the class Ei. So to prove Theorem 2.5 we have to establish the
reverse inclusion Ei →֒ Gi(T

2) for i = 0, 1. In other words we need to prove that for each
A ∈ Ei there exists a Morse function f on T 2 such that A ∼= G(f). These will be done
below in Subsections 5.1 and 5.2. The case of simple Morse functions will be considered
in Subsection 5.3.

5.1. Case 1: Functions, whose graphs have circuits. Let A be a group from E1.
So the group A has the form B ≀Zn for some B ∈ P and some n ≥ 1. We divide the proof
of the inclusion E1 →֒ G1(T 2) into two steps. First we have to define a Morse function
f0 : T 2 → R such that Γf0 contains a circuit and G(f0) ∼= Zn for n as above. Then for
the given group B we change f0 on a neighborhood of maximums of f0 to obtain another
Morse function f : T 2 → R such that G(f) ∼= B ≀ Zn.
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One can define such a Morse function f0 by the following procedure. Let Qi =
S1 × [0, 1], i = 0, . . . , n− 1 be a cylinder and gi : Qi → R be a Morse function such that
gi has one maximum li, one minimum pi, two saddles si1, si2 and

g(∂Qi) = 0, g(li) = 1, g(pi) = −1, g(sij) = ±1/2, j = 1, 2.

Consider the same orientation on each Qi; it canonically induces the orientations of
the connected components of the boundary ∂Qi = ∂Q0

i ∪ ∂Q1
i , where ∂Qj

i = S1 × {j},
j = 0, 1.

If n = 1 attach the boundaries of Q0 by identity diffeomorphism. The resulting
surface is a 2-torus. Since the values of g on ∂Q0

0 and ∂Q1
0 coincide, it follows that g0

induces a unique Morse function f0 on T 2. If n ≥ 1 attach all Qi together in cyclic order
by identity diffeomorphism of ∂Q1

i → ∂Q0
i+1 where the index i takes modulo n. The

resulting surface is obviously a 2-torus, and since the values gi on connected components
of the boundary of Qi coincide, it follows that g0 induces a unique smooth function f0
on T 2 such that Γf0 contains a circuit and G(f0) ∼= Zn. Points li, pi and sij are the
corresponding maximums, minimums and saddle points of f0, i = 0, . . . , n− 1, j = 1, 2.

Let Di be a neighborhood of the maximum li of f0 which does not contain other
critical points and consists of connected components of level-sets of f . For the given
group B by Theorem 2.2 there exists a smooth function fi on a 2-disk Di such that
G(fi) ∼= B. Next we change the function f0 on Di by replacing f0|Di

to fi on Di; the
resulting function we denote by f . By Lemma 4.5, f is such that Γf contains a unique
circuit and G(f) ∼= B ≀ Zn. So we proved that the inclusion E1 →֒ G1(T 2) holds.

5.2. Case 2: Functions, whose graphs are trees. Let A be a group from E0. We
need to show that there exists a Morse functions f on T 2 such that Γf is a tree and
G(f) ∼= A. From the definition of the class E0 there exist n,m ≥ 1 and B ∈ P such
that A = B ≀ (Zn × Zmn). As in the Case 1 we divide our proof into two steps. First for
a given n,m ≥ 1 we define a Morse function f0 : T 2 → R such that Γf0 is a tree and
G(f0) = Zn×Zmn, and finally for the given group B we change the function f0 to obtain
the Morse function f : T 2 → R such that G(f) ∼= B ≀ (Zn × Zmn).

To do the first step we need some preliminaries. Let γ : R2×Z
2 → R

2 be a free action
of Z2 given by the formula γ((x, y), (a, b)) = (x + 2a, y + 2b). For n,m ≥ 1 as above this
action induces a free action δ of the subgroup nZ × mnZ of Z

2 on R
2 by the formula

δ((x, y), (a, b)) = (x+ 2na, y + 2mnb). Note that the rectangle P = [0, 2n]× [0, 2mn] is a
fundamental domain for the action δ, and the quotient space R

2/δ is a 2-torus. Let Dkl

be a square [k, k+ 1]× [l, l+ 1] ⊂ R
2, k, l ∈ Z, and q : R2 → R

2/δ be the projection map,
and B be the set of images of Dkl with respect to q. The action δ induces a free action
σ of Zn × Zmn on the set B. The number of orbits of this action is equal to

#(squares Dkl belonging to P )

#(Zn × Zmn)
=

4n2m

n2m
= 4.

So all disks Dkl = [k, k + 1] × [l, l + 1] in P can be enumerated as Drij by three indexes
r = 1, 2, 3, 4, i = 0, 1, . . . , n− 1, and j = 0, 1, . . . ,mn− 1. Let mrij be an internal point
of Drij .

Then there exists a double-periodic Morse function g0 : R2 → R such that g0◦δa,b = g0
for all (a, b) ∈ Z

2, where δa,b(x, y) = δ((x, y), (a, b)), and on P it satisfies:

• g0({k, l}) = 0 is a saddle point, k = 0, 1, . . . , 2n− 1, l = 0, 1, . . . , 2mn− 1,
• g0 has a unique maximum at mr00 for r = 1, 2, and a unique minimum for r = 3, 4

and such that

g0(m100) = 1, g0(m200) = 2, g0(m300) = −1, g0(m400) = −2.
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It is easy to see that g0 induces a unique Morse function on T 2 = R
2/δ, which we denote

by f0. The resulting function f0 is such that Γf0 is a tree, and G(f0) = Zn × Zmn.
It remains to modify f0 using the group B as above. Since the action σ on B has 4

orbits, choose one of them, say when r = 1. By Theorem 2.2 there exists a Morse function
f1ij on D1ij such that G(f1ij) ∼= B for all i = 0, . . . , n − 1 and j = 0, . . . ,mn − 1. We
change the function f0 on D1ij by replacing of f0|D1ij

to f1ij , and the resulting function
we will denote by f . Note that G(f |Drij

) = 1 for r = 2, 3, 4 and i = 0, 1, . . . , n − 1,
j = 0, 1, . . . , nm− 1 by definition of f0. Then by Lemma 4.5

G(f) ∼=

4∏

r=1

G(f |Dr00
) ≀ (Zn × Zmn)

= G(f |D100
) ≀ (Zn × Zmn)

∼= B ≀ (Zn × Zmn).

So we proved that the inclusion E0 →֒ G0(T 2) holds.

5.3. Case 3: Simple Morse functions. It is easy to see that there exist simple Morse
functions on T 2 in the case when its graph contains a unique circuit. Indeed, a Morse
function f on T 2 such that Γf contains a unique circuit is simple if the restriction f |Qi

is simple for each i = 0, 1, . . . , n. The following lemma shows that this is the only case.

Lemma 5.4. Let f be a simple Morse function on T 2. Then Γf is not a tree.

Proof. Assume that f is simple and Γf is a tree. Then there exists a unique special

vertex v of the tree Γf . Let V = p−1
f (v) be a special component of critical level-set of f

which corresponds to v. Note that the special component V contains “many” saddles of
f . Let also N be a regular neighborhood of V which consists of level-sets of f and does
not contain other critical points. Since v is a special vertex, it follows that T 2 −N is a
disjoint union of 2-disks, say {Di}

n
i=1 for some n ∈ N. Note that the restriction f |Di

for
all i = 0, 1, . . . , n is also a simple Morse function since f is simple.

Next we change the function f in the following way: replace f |Di
by the function on

2-disk Di which has the only one critical point, i = 1, . . . , n; the resulting function we
denote by g. After these changes the function g satisfies the following conditions:

(1) Γg is also a tree, since all changes of f were on the connected components of the
complement of N being 2-disks,

(2) V is also a critical level-set of g, but all saddles of g belong to V ,
(3) g is simple since f was simple.

Since g is simple (by assumption on f and by construction), it follows that the number
of saddles belonging to V must be equal to 1, and so c1(g) = 1. From Morse equality
(Theorem 4.7) we have c1(g) = c0(g) + c2(g), and so 1 = c0(g) + c2(g). This is an
inconsistency. Hence if f is simple, then Γf is not a tree. �

Now we need to show that the classes G smp(T 2) and E2 coincide. First we show the
inclusion G smp(T 2) →֒ E2 holds. Let f be a simple Morse function on T 2. By Lemma
5.4 the graph Γf has a unique circle. The restriction f |Q0

is simple Morse function on
cylinder Q0 so G(f |Q0

) belongs to the class P2. By (1) Lemma 4.5 the group G(f) is
isomorphic to G(f |Q0

) ≀Zn for some n ≥ 1 which depends on the function f , and so G(f)
belongs to E2 by definition of the class E2.

The reverse inclusion E2 →֒ G smp(T 2) follows from the procedure defined in Case 1
with B ∈ P2 as sub-case. Theorem is proved.

Acknowledgments. Authors would like to express their gratitude to Sergiy Maksy-
menko for advises and discussions.
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