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On nonautonomous Markov evolutions
in continuum
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Abstract. The nonautonomous Cauchy problem in a scale of Banach
spaces is investigated. The existence and uniqueness of solutions to this
problem is proven. The obtained results are applied to several dynamics
of Markov evolutions in continuum (e.g. spatial logistic model, Glauber
dynamics, etc.).
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1 Introduction

A possible way of describing dynamics of complex systems of interacting parti-
cle is to assume that the elementary acts of the evolution occur at random and
the evolution itself is Markovian. Among the mentioned elementary acts one
can distinguish birth, death and motion. The rates at which they occur may
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depend on the actual state of the system and on the environment. Among var-
ious problems coming from the natural and life sciences the existence of state
evolutions for wide classes of intensities (e.g. time dependent intensities) seems
to be one of the fundamental problem. The evolution of states is informally
given as a solution to the initial value problem:

d

dt
〈F, μt〉 = 〈LF, μt〉, μt|t=0 = μ0,

provided, of course, that a solution exists. Here L is an informal generator
which describes the functional evolution of the system

∂

∂t
Ft = LFt, Ft|t=0 = F0

and

〈F, μ〉 :=
∫
Γ

F (γ)dμ(γ).

One of the aims of the present paper is to develop methods to solve nonau-
tonomous Cauchy problems in a scale of Banach spaces Bα, which will be used
to treat systems with time or enviroment dependent intensities. Our main
technical tool is a general theorem by M. Safonov from [26] and several con-
clusions, obtained in the present paper. Using this theorem we will prove the
existence of solutions on a bounded time interval for several models and in
some cases we will give conditions for the existence of solutions on unbounded
time intervals. The first part will be devoted to the general theory of nonau-
tonomous Cauchy problems on scales of Banach spaces. A version of the gen-
eral theorem by Safonov for linear operators will be proven. Afterwards we
will extend this theorem for weaker assumptions, where the generator consists
of two parts L = A + B and only the second part satisfies the assumptions
of the general theorem of Safonov. This technique will be used to prove a
continuous dependence of the solutions on parameters. Markov evolutions of
continuous interacting particle systems were studied by many authors for time
independent coefficients. In the present paper we are going to be focused on
nonautonomous models of birth and death type. However, the abstract results
obtained in this paper may be applied also to other classes of Markov evolution.
In our approach, populations will appear as particle configurations forming the
following phase spaces

Γ = Γ(Rd) = {γ ⊂ Rd : |γ ∩K| <∞, ∀K ⊂ Rd compact}.
One of the most simplest models of birth and death type is the so-called Sour-
gailis model. The mechanism of its evolution is given by the following heuristic
generator

(LF )(γ) = m
∑
x∈γ

(F (γ\x)− F (γ)) + κ

∫
Rd

(F (γ ∪ x)− F (γ)) dx (1)

with m,κ > 0, cf. [27, 28]. In (1), the first term describes the death of the par-
ticle located at x ∈ γ occurring independently with the ratem > 0. The second
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term in (1) describes the birth of a particle at x ∈ Rd with the constant rate
κ > 0, which is independent of γ ∈ Γ. The corresponding state evolution as
well as ergodic properties of the process were recently studied in [3].

Another model for Markov evolution which includes interaction between
particles in the birth mechanism is, for example, the continuous contact model.
It can be described by the formal Markov generator

(LF )(γ) = m
∑
x∈γ

(F (γ\x)− F (γ)) +

∫
Rd

∑
x∈γ

a(x, y) (F (γ ∪ y)− F (γ)) dy,

where m > 0 and a(x, y) > 0. The first term (death) is the same as for
Sourgailis model and the second term describes the birth of a new particle at
y ∈ Rd given by the whole configuration γ with the rate

∑
x∈γ

a(x, y) > 0. This

model was studied in the translation invariant case, i.e. a(x, y) ≡ a(x − y) =
a(y − x), in [18] and [20]. In [20] the authors proved the existence of the
corresponding process for a dispersion kernel a ∈ Lp(Rd), p > 1 with compact
support. The evolution of correlation functions and invariant states for the
contact model were studied in [18].

A generalization of the previous model which includes local regulation in
death is described by

(LF )(γ) =
∑
x∈γ

(
m+

∑
y∈γ\x

a−(x, y)
)
(F (γ\y)− F (γ))

+
∑
x∈γ

∫
Rd

a+(x, y)(F (γ ∪ y)− F (γ))dy

with a competition kernel a− : Rd × Rd −→ R+, a dispersion kernel a+ :
Rd × Rd −→ R+ and a mortality rate m > 0. Such model is called spatial lo-
gistic model or Bolker-Dieckman-Law-Pacala (short BDLP) model. A detailed
analysis of this model in the case of translation invariant kernels may be found
in [5, 7].

Another example of birth and death type dynamics is a non-equilibrium
Glauber-type dynamics, described by

(LF )(γ) = m
∑
x∈γ

(F (γ\x)− F (γ)) + z

∫
Rd

e−E(x,γ)(F (γ ∪ x)− F (γ))dx

with E(x, γ) =
∑
y∈γ

φ(x, y), where φ : Rd × Rd −→ R is a pair potential.

For non-negative translation invariant potentials this model was discussed in
[4, 6, 11, 12, 17, 19]. The reversible states for these dynamics are grand canoni-
cal Gibbs measures. This fact gives a standard way to construct properly associ-
ated stationary Markov processes using the corresponding (non-local) Dirichlet
forms related to the considered Markov generators and Gibbs measures. These
processes describe the equilibrium Glauber dynamics which preserve the initial
Gibbs state in the time evolution, see e.g. [19]. The construction of a non-
equilibrium Glauber-type dynamics was done in [17]. It was based on a general
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approach for the construction of non-equilibrium evolutions developed in [16].
In [6] the authors have shown that the correlation functions corresponding
to Glauber dynamics converge to the correlation functions of the equilibrium
state. Using Ovsjannikov-type technique in [4] an evolution in a scale of Ba-
nach spaces for quasi-observables and correlation functions was proved. In
contrast to [6] in the present paper no conditions on z and β =

∫
Rd

1− e−φ(x)dx

are imposed. The same technique was used in [11] to analyze the evolution of
Bogoliubov generating functionals. In the present paper the similar arguments
will be used to generalize the existence results, although only existence and no
further properties will be studied.

Chapter 3.5 of this paper is devoted to the general birth and death Markov
dynamics, given by

(LF )(γ) =
∑
x∈γ

d(x, γ\x)(F (γ\x)−F (γ))+

∫
Rd

b(x, γ)(F (γ ∪x)−F (γ))dx. (2)

Using a semigroup approach the existence of a solution to the corresponding
Cauchy problem for quasi-observables and correlation functions were proven,
cf. [8]. The authors further have shown that under several conditions there
exists a unique solution to the stationary equation LΔk = 0, which can be con-
structed by the “generalized Kirkwood-Salzburg” operator. Here LΔ denotes
the generator for the evolution of correlation functions. In this paper we will
also study these equations in the class of sub-Poissonian correlation functions.

The structure of the paper can be described as follows. At the beginning
we give a brief outline on the continuous Sourgailis model. An explicit solution
for correlation functions kt will be given and differentiability on some Banach
spaces will be proven, assuming the initial data are regular enough. The pos-
sibility to solve all equations explicitly suggests this model as a play model.
Further questions concerning this model deal with random time dependent co-
efficients.

In sections 3 and 4 the existence of solutions for quasi-observables in the
case of BDLP and Glauber dynamics will be proven and, further, the evolution
of correlation functions and Bogoliubov generating functionals be considered
for Glauber dynamics. The assumptions are likely the same as for the time
independent results, despite all inequalities should hold uniformly in time.

In the last section we will prove existence of solutions for infinite time
intervals for general birth and death dynamics with the time dependent coef-
ficients. Here the time dependence will enter only multiplicatively, i.e. dt =
m(t)d and bt = κ(t)b (cf. (2)), since we need precise information about the
domains of the corresponding generators.
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2 Evolution Equations in Scales of Banach
Spaces

2.1 General setting

Let X be a Banach space, let [0, T ] = I ⊂ R be a compact interval, and
let (L(t), D(L(t)))t∈[0,T ] be a family of operators on X. Our main object of
investigation is the following nonautonomous Cauchy problem

∂u

∂t
(t) = L(t)u(t), t ≥ s, t ∈ I, u(s) = u0 (3)

on X for 0 ≤ s < T . Such equations were analyzed in, e.g. [13, 22, 23]. The
aim is to construct an evolution family

Δ � (t, s) �−→ U(t, s) ∈ L(X),

where Δ = {(t, s) ∈ I × I : s ≤ t }. This map should be strongly continuous
and should have, instead of the usual semigroup property, the evolution family
property

U(s, s) = idX , U(t, q)U(q, s) = U(t, s), 0 ≤ s ≤ q ≤ t ≤ T.

In order to give sense to the right hand side of (3), i.e. L(t)u(t), we should
assume u(t) ∈ D(L(t)) or more generally

u(t) ∈
⋂

s∈[0,T ]
D(L(s)) ⊂ X.

In general it is difficult to characterize the explicit structure of D(L(t)), which
is one of the major difficulties in this approach. Therefore one restricts to some
smaller subspace. Assume there exists a Banach space Y ⊂ ⋂

t∈I
Dom(L(t)) ⊂ X

such that for each u ∈ Y the mapping

Δ � (t, s) �−→ U(t, s)u ∈ X

is differentiable with derivatives

∂U

∂t
(t, s)u = L(t)U(t, s)u,

∂U

∂s
(t, s)u = −U(t, s)L(s)u.

Then we can formally write the solution to (3) as

u(t; s, u0) = U(t, s)u0.

Similarly, the expression L(t)U(t, s)u0 would be well-defined if we assume
U(t, s)u0 ∈ Y , so U(t, s)Y ⊂ Y , which will be assumption in Theorem 2.3.
This considerations motivate the following definition of a solution to the above
nonautonomous Cauchy problem (3), which can be found, e.g., in [24].
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Definition 2.1. Let X,Y be Banach spaces such that Y ⊂ X is continuously
and densely embedded. For a family of operators (L(t), D(L(t)))t∈[0,T ] assume

Y ⊂
⋂

t∈[0,T ]
D(L(t)) ⊂ X.

A function u = u(t) is called Y -valued solution of the nonautonomous Cauchy
problem (3) with initial condition u0 ∈ Y , if it has the following properties

1. u ∈ C([0, T ];Y ) ∩ C1([0, T ];X)

2. u solves (3).

The derivatives at t = 0 and t = T will be always defined by

∂u

∂t
(0) = lim

h→0,h>0

u(h)− u(0)

h
,

∂u

∂t
(T ) = lim

h→0, h>0

u(T )− u(T − h)

h
.

Note that in contrast to a classical solution we impose continuity in the
Y -norm, which is a stronger condition than just u(t) ∈ Y ⊂ D(L(t)). Contrary
to the general semigroup theory, where the semigroup is always differentiable
on the domain of its generator, it is possible that an evolution family is nowhere
differentiable. Now we will state two results due to [24] for existence of evolution
families under conditions know as “the hyperbolic case”. For this let us recall
the definition of admissibility.

Definition 2.2. Let (L,D(L)) be the generator of a C0-semigroup (T (t))t≥0
on X and Y ⊂ X a subspace. Y is said to be L-admissible if T (t)Y ⊂ Y holds
and the restriction T (t)|Y is a C0-semigroup on Y .

In [24] it was shown that this is equivalent to the condition that the part

L̃ of L on Y is again a generator of a C0-semigroup. This semigroup is then
given by restricting T (t) to Y . The part L̃ of L on Y is defined as

D(L̃) = {u ∈ Y ∩D(L) : Lu ∈ Y }, L̃u = Lu, for u ∈ D(L̃).

Theorem 2.1 ([24]). Let X,Y be Banach spaces such that Y can be densely
embedded in X and let (L(t), D(L(t)))t∈[0,T ] be generators of C0-semigroups

((eτL(t))τ≥0)t∈[0,T ] on X. Assume that the following conditions are satisfied:

1. L(t) is Kato-stable, i.e. ∃M ≥ 1 and ω ∈ R such that (ω,∞) ⊂ ρ(L(t))
for all t ∈ [0, T ] and

‖eτkL(tk) · · · eτ1L(t1)‖X ≤Me
ω

k∑

j=1
τj

for all 0 ≤ t1 ≤ · · · ≤ tk ≤ T , k ∈ N and τ1, . . . , τk ≥ 0, where ρ(L(t))
denotes the resolvent set of L(t).

2. Y ⊂ ⋂
t∈[0,T ]

D(L(t)) and

I � t �−→ L(t) ∈ L(Y,X)

is continuous in the uniform operator topology.
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3. Y is L(t)-admissible for all t ∈ [0, T ] and L̃(t) as the part of L(t) in Y is
Kato-stable.

Then there exists a unique evolution family (U(t, s))(t,s)∈Δ with the properties:

1. ‖U(t, s)‖L(X) ≤Meω(t−s), (t, s) ∈ Δ

2.

(
∂U

∂t

)+
(t, s)|t=su = L(s)u

3.
∂U

∂s
(t, s)u = −U(t, s)L(s)u

for u ∈ Y . Here the derivatives are considered in the sense of the norm in X

and

(
∂U

∂t

)+
(t, s)|t=su is the right-sided derivative evaluated at (s, s).

Remark 2.1.

1. Kato-stability is neither necessary nor a sufficient condition for the exis-
tence of an evolution family. In [23] the authors gave a counterexample,
where an evolution family exists, so the Cauchy problem (3) is well-posed,
but the stability condition is not satisfied.

2. The main idea of the proof is to consider a sequence of with respect to
t piecewise constant operators An(t) and define appropriate evolution
families Un(t, s), which are piecewise continuously differentiable on X for
u ∈ Y . After showing the existence of a limit U(t, s) in the strong sense
on L(X) it remains to show that the differentiability property still holds.

3. It is possible to replace continuity of t �−→ L(t) ∈ L(Y,X) by the weaker
assumption

L(·) ∈ L1([0, T ], L(Y,X)).

In this case the strong differentiability for (t, s) ∈ Δ holds only almost
everywhere.

To obtain stronger differentiability properties for U(t, s) we should know
further properties of the evolution family. In a scale of Banach spaces these
properties can be easily checked. As already mentioned we should assume

U(t, s)u ∈ Y for u ∈ Y to give meaning to the expression
∂U(t, s)

∂t
u =

L(t)U(t, s)u. This will be the content of the next theorem, cf. [24].

Theorem 2.2. Let X,Y, L(t), U(t, s) be as in Theorem 2.1. If U(t, s)Y ⊂ Y
holds and the mapping

Δ � (t, s) �−→ U(t, s)u

is continuous in Y for u ∈ Y , then U(t, s) satisfies the stronger differentiability
property

∂U

∂t
(t, s)u = L(t)U(t, s)u, 0 ≤ s < t ≤ T.

Consequently equation (3) has a unique Y -valued solution given by U(t, s)u0 =
u(t).
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2.2 Scales of Banach Spaces

In this section we will introduce the notion of a one-parameter family of Ba-
nach spaces and state some consequences for the corresponding nonautonomous
Cauchy problems, which will be useful later.

Definition 2.3. A scale of Banach spaces of type 1 is a one-parameter family
(Bα, ‖ · ‖α)α∗≤α≤α∗ with α∗ < α∗ satisfying

α′ < α =⇒ ‖ · ‖α ≤ ‖ · ‖α′ , Bα′ ⊂ Bα.

Analogous, a scale of Banach spaces of type 2 is a one-parameter family
(B′α, ‖ · ‖α)α∗≤α≤α∗ with

α′ < α =⇒ ‖ · ‖α′ ≤ ‖ · ‖α, B′α ⊂ B′α′ .

Bα will always denote a scale of Banach spaces of type 1 and B′α a scale of
type 2.

The family of weighted Lp spaces is a natural example for scales of Banach
spaces. Let (Ω, μ) be a measurable space and ω : Ω −→ R+ be a measurable
function. Define the weighted Lp spaces by

Bα =

{
f : Ω −→ K : ‖f‖pα =

∫
Ω

|f(x)|pe−αω(x)dμ(x) <∞
}

for 1 ≤ p <∞ and for p =∞ as the weighted Banach space with the norm

‖f‖α = ess sup
x∈Ω

|f(x)|e−αω(x).

Clearly (Bα, ‖ · ‖α) is a scale of Banach spaces of type 1 and B′α = B−α a scale
of Banach spaces of type 2.

Remark 2.2.

1. We do not impose conditions whether the embeddings from the smaller
into the bigger Banach spaces are dense. In applications we will consider
the scale of L1- respectively L∞-type spaces, so this condition would not
hold for Bα. In [2] the author uses the density of embeddings to prove
some sufficient conditions for the well-posedness of equation (3).

2. In general, the spaces Bα,
⋃

α′<α

Bα′ and
⋂

α′′>α

Bα′′ are different for a scale

of type 1. The same is valid for a scale of type 2.

Using this approach, one has the possibility to overcome the difficulty of
the time dependence of the domain D(L(t)). More precisely one would like to
consider the operators L(t) as bounded operators acting from smaller into a
bigger Banach space, cf. [2, 5, 11]. Using this, one could consider the operators
(L(t),Dom)t∈[0,T ] on Bα with the domain

Dom =
⋃

α′<α

Bα′
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for a scale of type 1. In the case of a scale of type 2 one has Dom =
⋃

α<α′
B′α′ .

Except for Theorem 2.1 and 2.3 we do not need any conditions of closedness
of the operators for this approach. Unfortunately, the solutions will only exist
on a bounded time interval [0, T∗). As a consequence of the proof we will see
that the solutions evolve in this scale of Banach spaces.

Now assume Y ↪→ X are Banach spaces and I � t −→ L(t) ∈ L(Y,X)
is strongly continuous. Then sup

t∈I
‖L(t)u‖X < ∞ holds for all u ∈ Y and

by Banach-Steinhaus theorem L(t) is uniformly bounded in t ∈ I, i.e. M :=
sup
t∈I

‖L(t)‖L(Y,X) < ∞. Moreover, for each function u ∈ C([0, T ];Y ) the map-

ping I � t �−→ L(t)u(t) ∈ X is continuous, which follows for t0, t ∈ I from

‖L(t)u(t)− L(t0)u(t0)‖X
≤ ‖L(t)u(t)− L(t)u(t0)‖X + ‖L(t)u(t0)− L(t0)u(t0)‖X
≤ M‖u(t)− u(t0)‖Y + ‖L(t)u(t0)− L(t0)u(t0)‖X .

For our calculations, we will need the following product formula for evolution
families, which proof shall be omitted.

Lemma 2.3. Let Y ↪→ X be Banach spaces, U : Δ −→ L(X) strongly contin-
uous in the second variable for fixed t ∈ I and let s �−→ U(t, s)u ∈ X be con-
tinuously differentiable for fixed t ∈ I and u ∈ Y . Then for each u ∈ C1(I,X)
such that u(t) ∈ Y with t ∈ I the equation

∂

∂s
(U(t, s)u(s)) =

∂U

∂s
(t, s)u(s) + U(t, s)

∂u

∂s
(s), (t, s) ∈ Δ (4)

holds on X.

Remark 2.3.

1. Of course, we can apply this lemma for strongly continuously differen-
tiable evolution families as in Theorem 2.1 and 2.3.

2. In many applications the so-called exponential growth condition

‖U(t, s)‖L(X) ≤ Ceω(t−s)

is satisfied. Nevertheless there are evolution families that do not have
exponential growth. For example denote by X the space of all continuous
bounded functions f : R −→ R and let 0 < p : R+ −→ R+ be bounded.
The expression

U(t, s)f(x) =
p(t)

p(s)
f(x), x ∈ R

defines an operator U(t, s) ∈ L(X) with ‖U(t, s)‖L(X) =
p(t)

p(s)
. If p is

not bounded away from 0, then clearly U(t, s) cannot be exponentially
bounded. Note that a strongly continuous semigroup (T (t))t≥0 always
obeys a bound ‖T (t)‖L(X) ≤ Ceωt.
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2.3 The Space of Solutions

At first, we will give a formal definition of a solution to equation (3) in a scale
of Banach spaces. The idea is to consider solutions in some Banach space Bα∗

with the property that for each t there exist αt such that u(t) ∈ Bαt
holds.

Additionally we would like to have the differentiability property for each α in
the space Bα. In other words a solution is a consistent family of solutions in
the spaces Bα.

Definition 2.4. Given a scale of Banach spaces of type 1 and L(t) ∈ L(Bα′ ,Bα)
for α′ < α and t ∈ [0, T ]. A solution in the scale Bα to the Cauchy problem

∂u

∂t
(t) = L(t)u(t), u(0) = u0 ∈ Bα∗ , t ∈ [0, T ] (5)

is given by a continuous, monotonically increasing function (α∗, α∗] � α �−→
T (α) > 0 with T (α) ≤ T , which we will call time data, and an element

u ∈ C1([0, T (α∗));Bα∗)

satisfying u(0) = u0 and for all α ∈ (α∗, α∗] we have

uα := u|[0,T (α)) ∈ C1([0, T (α));Bα) (6)

and
∂uα

∂t
(t) = L(t)uα(t)

in Bα.
Given a scale of Banach spaces of type 2 and L(t) ∈ L(B′α,B

′
α′) for α

′ < α.
A solution in the scale B′α to the Cauchy problem

∂u

∂t
(t) = L(t)u(t), u(0) = u0 ∈ B′α∗ , t ∈ [0, T ]

is given by a continuous, monotonically decreasing function [α∗, α∗) � α �−→
T (α) > 0 with T (α) ≤ T and an element

u ∈ C1([0, T (α∗));B′α∗)

satisfying u(0) = u0 and for all α ∈ [α∗, α∗) we have

uα := u|[0,T (α)) ∈ C1([0, T (α));Bα)

and
∂uα

∂t
(t) = L(t)uα(t)

in B′α.

Remark 2.4.

1. The time data T (α) may depend on the initial condition. Nevertheless
in our approach this will not be the case.
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2. If we start with some given T (α) > 0 and unique elements uα as in (6)
satisfying the corresponding equations one can show that u := uα∗ is a
solution in the scale Bα.

3. The continuity and monotonicity of T (α) implies that for t ∈ [0, T (α))
there exists some α′ < α such that 0 ≤ t ≤ T (α′) ≤ T (α) holds. Thus
one has uα(t) ∈ Bα′ and hence L(t)uα(t) is well-defined as an element in
Bα.

It is possible to rewrite the problem (5) in the integral form

u(t) = u0 +

t∫
0

L(τ)u(τ)dτ,

which proof shall be omitted.

Lemma 2.4. Assume that [0, T ] � t �−→ L(t) ∈ L(Bα′ ,Bα) is strongly contin-
uous for any α, α′ with α∗ ≤ α′ < α ≤ α∗, then the following statements are
equivalent:

1. u is the solution to (5) in the scale Bα with the time data T (α)

2. u ∈ C([0, T (α));Bα) for all α ∈ (α∗, α∗] and solves

u(t) = u0 +

t∫
0

L(τ)u(τ)dτ ∈ Bα, u0 ∈ Bα∗ (7)

for t ∈ [0, T (α)), where T (α) ≤ T is continuous and monotonically in-
creasing.

With the help of Lemma 2.8 it is easy to show the existence of a solution

to equation (5) on a bounded time interval. Assume ‖L(t)‖α′α ≤ M

α− α′
for

α′ < α and that [0, T ] � t �−→ L(t) ∈ L(Bα′ ,Bα) is strongly continuous, where
‖ · ‖α′α denotes the operator norm on L(Bα′ ,Bα). We will show this only for
a scale of type 1, since the other case can be shown analogous. Let u0 ∈ Bα∗
and define the sequence

u0(t) = u0, un+1(t) = u0 +

t∫
0

L(τ)un(τ)dτ, n ∈ N0, (8)

which satisfies

un(t) = u0 +

n∑
k=1

t∫
0

t1∫
0

. . .

tk−1∫
0

L(t1) . . . L(tk)u0dtk . . . dt1 ∈ C([0, T (α));Bα).

For n ∈ N and α∗ < α < α∗ define

ε =
α− α∗

n
and αj = α∗ + jε for j = 0, . . . , n, (9)
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so we have α0 = α∗, αn = α and αj+1 − αj = ε and hence

‖un(t)− un−1(t)‖α ≤
t∫
0

t1∫
0

. . .

tn−1∫
0

(
M

ε

)n

‖u0‖α∗dtn . . . dt1

=
1

n!

(
tnM

α− α∗

)n

‖u0‖α∗ . (10)

Using Stirlings formula we see that the right hand side is summable in n ∈ N

for |t| < T (α) with

T (α) =
α− α∗
eM

. (11)

Hence, (un(t))n∈N ⊂ Bα is a fundamental sequence and therefore has a limit
u(t) = lim

n→∞un(t) ∈ Bα for t ∈ [0, T (α)). Moreover, the convergence is uniform
on each interval [0, s] ⊂ [0, T (α)). To show this, consider for n < m

‖um(t)− un(t)‖α ≤
m−1∑
k=n

‖uk+1(t)− uk‖α ≤ Const.

∞∑
k=n

(
t

T (α)

)k

and obtain by passing to the limit m→∞

‖un(t)− u(t)‖α ≤ Const.

∞∑
k=n

(
t

T (α)

)k

.

Therefore u ∈ C([0, T (α));Bα) and by

‖L(t)un(t)− L(t)un−1(t)‖α ≤
(
M

ε

)n+1

‖u0‖α∗
tn

n!

=
nM

α− α∗
‖u0‖α∗

1

n!

(
tnM

α− α∗

)n

the convergence L(t)un(t) → L(t)u(t) holds uniformly on compact intervals
t ∈ [0, s] ⊂ [0, T (α)). Consequently taking the limit in (8) we obtain equation
(7).

Remark 2.5.

1. In the same way one can show the existence for arbitrary initial times t0.
In this case we would have the condition |t− t0| < T (α) for convergence.

2. The difficulty is to show that the solution above is unique. Our assump-
tions on L(t) do not allow to apply the Gronwall Lemma. To overcome
this difficulty we will solve the corresponding integral equation (7) in
some Banach space Sβ , which reflects the properties of a solution in a
scale Bα.

The general result for a quasilinear Cauchy problem in a scale of type 2
was published by Safonov in 1995 in [26]. Here we will only present a proof
for the linear equation in a scale of type 1. The last result suggests that

T (α) =
α− α∗

λ
for λ > 0 is a natural candidate for the time data. This

motivates the following definition.
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Definition 2.5. For λ > 0 and β ≥ 0 let

Sβ
1 (α∗, α

∗, λ) ≡ Sβ
1 =

{
u ∈

⋂
α∗≤α≤α∗

C

([
0,

α− α∗
λ

)
;Bα

) ∣∣∣∣ ‖u‖(β)1 <∞
}

for the type 1 scale and

Sβ
2 (α∗, α

∗, λ) ≡ Sβ
2 =

{
u ∈

⋂
α∗≤α≤α∗

C

([
0,

α∗ − α

λ

)
;B′α

) ∣∣∣∣ ‖u‖(β)2 <∞
}

for the type 2 scale. The norms are given by

‖u‖(β)1 = sup
α∈[α∗,α∗], t∈[0,T1(α))

(α− α∗ − λt)β‖u(t)‖α

‖u‖(β)2 = sup
α∈[α∗,α∗], t∈[0,T2(α))

(α∗ − α− λt)β‖u(t)‖α

with T1(α) =
α− α∗

λ
and T2(α) =

α∗ − α

λ
.

Here we use the notation C([0, 0);Bα∗) = Bα∗ and C([0, 0);Bα∗) = Bα∗ .

Clearly this spaces are complete and therefore Banach spaces.

2.4 Existence of local solutions and properties

In the main part of this section we will discuss two possibilities to show existence
of solutions to (5). The first existence result is a simplified version of the general
result from [26].

Theorem 2.5. Consider a scale (Bα, ‖ · ‖α)α∗≤α≤α∗ of type 1 and assume that
there exist λa > 0 and M ≥ 0 such that

1.

[
0,

α∗ − α∗
λa

)
� t �−→ L(t) ∈ L(Bα′ ,Bα) is strongly continuous for any

α′ < α

2. ‖L(t)‖α′α ≤ M

α− α′
for any α′ < α and t ∈

[
0,

α∗ − α∗
λa

)
.

Then there exists λ0 > λa > 0 and Tλ : (α∗, α∗] −→ R+ continuous and
monotonically increasing given by

Tλ(α) =
α− α∗

λ
, with λ > λ0

such that for each initial condition u0 ∈ Bα∗ there exists a unique solution

u ∈ Sβ
1 (λ) to the Cauchy problem

∂u

∂t
(t) = L(t)u(t), u(0) = u0

in the scale Bα.



18 M. Friesen, O. Kutoviy

Assuming we have proved this theorem, we can also state the following
version.

Theorem 2.6. Consider the type 2 scale (B′α, ‖ · ‖α)α∗≤α≤α∗ and assume that
there exist λa > 0 and M ≥ 0 such that

1.
[
0,

α∗ − α∗
λa

)
� t �−→ L(t) ∈ L(B′α,B

′
α′) is strongly continuous for any

α′ < α

2. ‖L(t)‖αα′ ≤ M

α− α′
for any α′ < α and t ∈

[
0,

α∗ − α∗
λa

)
.

Then there exists λ0 > λa > 0 and Tλ : [α∗, α∗) −→ R+ continuous and
monotonically decreasing given by

Tλ(α) =
α∗ − α

λ
, with λ > λ0

such that for each initial condition u0 ∈ B′α∗ there exists a unique solution

u ∈ Sβ
2 (λ) to the Cauchy problem

∂u

∂t
(t) = L(t)u(t), u(0) = u0

in the scale Bα.

Proof. Define the spaces B̃α = B′α∗+α∗−α with the norm ‖ · ‖′α = ‖ · ‖α∗+α∗−α

for α∗ ≤ α ≤ α∗ and apply the first result.

Now we will prove the first stated version, namely Theorem 2.11.

Proof. By Lemma 2.8 it is enough to solve the equation

u(t) = u0 +

t∫
0

L(τ)u(τ)dτ =: u0 + (Tu)(t)

in the space Sγ . So let λ ≥ λa and β > 0. To abuse notation, we will write in

this proof ‖ · ‖(β) for the norm ‖ · ‖(β)1 .

1. For u ∈ Sβ we have: ‖L(·)u(·)‖(β+1) ≤M2β+1‖u‖(β).
Indeed, let 0 ≤ t <

α− α∗
λ

and take α′ < α so close to α that we have

0 ≤ t <
α′ − α∗

λ
<

α− α∗
λ

. Thus u(t) ∈ Bα′ implies L(t)u(t) ∈ Bα and

since α and t were arbitrary we obtain

L(t)u(t) ∈ Bα, 0 ≤ t <
α− α∗

λ
.

Now let α ∈ (α∗, α∗] and t ∈ [0, Tλ(α)) be arbitrary and define

ρ = α− α∗ − λt, α′ = α− ρ

2
.

For such ρ and α the following holds
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(a) α∗ ≤ α′ < α ≤ α∗

(b) α− α′ =
ρ

2
= α− α∗ − λt− ρ

2
= α′ − α∗ − λt

(c) α− α∗ − λt = ρ = 2(α′ − α∗ − λt)

and hence we obtain

(α− α∗ − λt)β+1‖L(t)u(t)‖α ≤ M
(α− α∗ − λt)β+1

α− α′
‖u(t)‖α′

= M2β+1(α′ − α∗ − λt)β‖u(t)‖α′
≤ M2β+1‖u‖(β)

which implies ‖L(·)u(·)‖(β+1) ≤M2β+1‖u‖(β).

2. For u ∈ Sβ+1 we have: ‖Tu‖(β) ≤ M2β+1

βλ
‖u‖(β+1).

Indeed, let α∗ ≤ α ≤ α∗ and t ∈ [0, Tλ(α)), then we have∥∥∥∥∥
t∫
0

u(τ)dτ

∥∥∥∥∥
α

≤
t∫
0

‖u(τ)‖αdτ ≤
t∫
0

(α− α∗ − λτ)−β−1dτ‖u‖(β+1)

≤ ‖u‖(β+1)
βλ

(α− α∗ − λt)−β

and so
∥∥∥ •∫
0

u(τ)dτ
∥∥∥(β) ≤ ‖u‖(β+1)

βλ
. Now the statement follows from

‖Tu‖(β) =
∥∥∥∥

•∫
0

L(τ)u(τ)dτ

∥∥∥∥(β) ≤ 1

βλ
‖L(·)u(·)‖(β+1) ≤ M2β+1

βλ
‖u‖(β).

3. We saw that for all λ > max{λa,
M2β+1

β
} =: λ0 ≥ λa

‖Tu‖(β) ≤ λ0
λ
‖u‖(β) < ‖u‖(β)

holds. Let u0 ∈ Bα∗ be arbitrary. Using

‖u0‖(β) = sup
α∈[α∗,α∗], t∈[0,Tλ(α))

(α− α∗ − λt)β‖u0‖α

≤
(

sup
α∈[α∗,α∗], t∈[0,Tλ(α))

(α− α∗ − λt)β
)
‖u0‖α∗

one sees that u0 ∈ Sβ and hence the sequence (u(k))k∈N given by u(0) = u0
and u(k+1) = u0 + Tu(k) satisfies u(k) ∈ Sβ , cf. Definition 5. Due to

‖u(k+1) − u(k)‖(β) ≤
(
λ0
λ

)k

‖u(1) − u(0)‖(β)
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this sequence has a limit u ∈ Sβ . By definition this limit satisfies

u(t) = u0 +

t∫
0

L(τ)u(τ)dτ, ∀t ∈ [0, Tλ(α))

with the time data Tλ(α) =
α− α∗

λ
.

4. For uniqueness let v ∈ Sβ solves the Cauchy problem with the zero initial
data or equivalently

v(t) =

t∫
0

L(τ)v(τ)dτ = (Tv)(t).

So v is a fix-point of T and because of ‖T‖L(Sβ) ≤
λ0
λ

< 1 we have that

v = 0.

Remark 2.6.

1. Minimizing the expression
2β

β
we obtain for β =

1

log(2)
and λa small

λ0 = 2eM log(2) = eM log(4).

So up to the factor log(4) this is the same time data as in the first existence
result, cf. (11).

2. Note u(t) ∈ ⋂
α>αt

Bα, where αt is given by

0 ≤ t <
αt − α∗

λ
⇐⇒ 0 ≤ α∗ + λt < αt.

Thus we have u(t) ∈ ⋂
α>α∗+λt

Bα.

3. Now we have solved the Cauchy problem for each β > 0 and λ > λ0, so
there are solutions u = uβ,λ. For each λ > λ0 and β′ < β the inequality

(α−α∗−λt)β = (α−α∗−λt)β′(α−α∗−λt)β−β′ ≤ (α∗−α∗)β−β′(α−α∗−λt)β′

implies ‖ · ‖β1 ≤ (α∗−α∗)β−β′‖ · ‖β′1 . The same holds for a scale of type 2.
Consequently we obtain Sβ′ ⊂ Sβ for each β′ < β. Since λ0 depends on

β we use Remark 2.12.1 and chose β =
1

log(2)
to obtain solutions on the

biggest possible time interval. But in the same way

(α− α∗ − λt)β ≤ (α− α∗ − λ′t)β

for λ′ < λ implies that the solutions satisfy

uβ,λ(t) = uβ,λ′(t) for t ∈ [0, Tλ(α)) ⊂ [0, Tλ′(α)).
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So taking β =
1

log(2)
and T (α) =

α− α∗
λ0

we obtain the existence of a

unique solution u :

[
0,

α∗ − α∗
λ0

)
−→ Bα∗ . By construction each restric-

tion to [0, Tλ(α)] corresponds to some element

u|[0,Tλ(α)] ∈ C1 ([0, Tλ(α)];Bα)

for λ > λ0 and sup
α∈[α∗,α∗],t∈[0,Tλ(α))

(α − α∗ − λt)β‖u‖α < ∞ solving the

Cauchy problem in Bα.

Now let λ > λ0, u0, v0 ∈ Bα∗ be two initial conditions and u respectively
v the corresponding solutions. Then we have

‖u− v‖(β) ≤ ‖u0 − v0‖(β) + ‖T (u− v)‖(β) ≤ ‖u0 − v0‖(β) + λ0
λ
‖u− v‖(β)

and hence

‖u− v‖(β) ≤ λ

λ− λ0
‖u0 − v0‖(β).

Taking into account that

‖u0 − v0‖(β) = sup
α∈[α∗,α∗], t∈[0,Tλ(α))

(α− α∗ − λt)β‖u0 − v0‖α

≤ (α∗ − α∗)β‖u0 − v0‖α∗
we can rewrite

‖u− v‖(β) ≤ λ

λ− λ0
(α∗ − α∗)β‖u0 − v0‖α∗

or using α ∈ (α∗, α∗] and t ∈ [0, Tλ(α))

‖u(t)− v(t)‖α ≤ λ

λ− λ0

(
α∗ − α∗

α− α∗ − λt

)β

‖u0 − v0‖α∗ .

This shows, that the solutions depend continuously on the initial data u0, v0.
It is possible to show a stronger result, but this part shall be omitted. Now
we would like to handle the situation, where L(t) does not satisfy an esti-

mate ‖L(t)‖α′α ≤ M

α− α′
. In applications effects like pair interaction lead

to operators, which do not satisfy above estimate. Nevertheless the follow-
ing approach may be still applicable. Assume L(t) can be decomposed into
L(t) = A(t) + B(t), where B(t) still satisfies this assumption. If we can solve
the Cauchy problem for A(t) with an evolution family, one can try to solve the
Cauchy problem for L(t) using similar arguments like the ones before. This
approach is realized in the next theorem.

Theorem 2.7. Let (Bα, ‖ · ‖α)α∗≤α≤α∗ be a scale of type 1 and λa > 0 such
that A(t) satisfies the following assumptions

1. For all α′, α with α∗ ≤ α′ < α ≤ α∗ the mapping [0,
α∗ − α∗

λa
] � t �−→

A(t) ∈ L(Bα′ ,Bα) is strongly continuous,
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2. For all α ∈ [α∗, α∗] there exists an evolution family U : Δ −→ L(Bα) such

that ‖U(t, s)‖L(Bα) ≤ 1 for (t, s) ∈ Δ = {(t, s) ∈ [0, α
∗ − α∗
λa

]2 : s ≤ t},

3. For all α′ < α and u ∈ Bα′

Δ � (t, s) �−→ U(t, s)u ∈ Bα

is differentiable with derivatives

∂U

∂t
(t, s)u = A(t)U(t, s)u, 0 ≤ s ≤ t ≤ α∗ − α∗

λa

and
∂U

∂s
(t, s)u = −U(t, s)A(s)u, 0 ≤ s ≤ t ≤ α∗ − α∗

λa
.

In the case of s = t the derivative
∂U

∂t
(t, s)u is to be understood as a

right-sided derivative.

Further assume that [0,
α∗ − α∗

λa
] � t �−→ B(t) ∈ L(Bα′ ,Bα) is strongly con-

tinuous for all α′ < α satisfying ‖B(t)‖α′α ≤ M

α− α′
. Then there exists

λ0 > λa > 0 and Tλ : (α∗, α∗] −→ R+ continuous and monotonically increasing
given by

Tλ(α) =
α− α∗

λ
with λ > λ0

such that for each initial condition u0 ∈ Bα∗ there exists a unique solution u
in Sβ(λ) to the Cauchy problem

∂u

∂t
(t) = (A(t) +B(t))u(t), u(0) = u0 (12)

in the scale Bα.

Analogous to the previous result the first step is to reformulate the Cauchy
problem in the integral form. This will be the content of the next lemma, for
which (4) is needed.

Lemma 2.8. Let A(t), B(t), U(t, s) be like in Theorem 2.13. Then the follow-
ing statements are equivalent:

1. u is a solution to (12) in the scale (Bα, ‖ · ‖α)α∗≤α≤α∗ with a time data
T (α) > 0

2. u ∈ ⋂
α∗≤α≤α∗

C ([0, T (α));Bα) solves the equation

u(t) = U(t, 0)u0 +

t∫
0

U(t, τ)B(τ)u(τ)dτ (13)

in Bα for t ∈ [0, T (α)) and α ∈ (α∗, α∗].
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Using Lemma 2.14 we are now in a position to prove Theorem 2.13 in a
scale of Banach spaces of type 1.

Proof. For λ > λa we will solve the equation (13)

u(t) = U(t, 0)u0 +

t∫
0

U(t, τ)B(τ)u(τ)dτ = U(t, 0)u0 + (Tu)(t).

Write ‖·‖(β) and Tλ as before. Using ‖U(t, s)‖L(Bα) ≤ 1 we obtain for u ∈ Sβ+1,
α ∈ [α∗, α∗] and t ∈ [0, Tλ(α)) by the proof of Theorem 2.10∥∥∥∥∥∥

t∫
0

U(t, τ)u(τ)dτ

∥∥∥∥∥∥
α

≤
t∫
0

‖u(τ)‖αdτ ≤ (α− α∗ − λt)−β

βλ
‖u‖(β+1).

As a result we have shown

∥∥∥∥ •∫
0

U(·, τ)u(τ)dτ
∥∥∥∥(β) ≤ 1

βλ
‖u‖(β+1) and therefore

‖Tu‖(β) =
∥∥∥∥∥∥

•∫
0

U(·, τ)B(τ)u(τ)dτ
∥∥∥∥∥∥
(β)

≤ 1

βλ
‖B(·)u(·)‖(β+1) ≤ M2β+1

βλ
‖u‖(β).

For the same λ as in the previous proof and β > 0 we have ‖Tu‖(β) ≤ λ0
λ
‖u‖(β).

Now define a sequence by u(0)(t) = U(t, 0)u0 and u(k+1)(t) = U(t, 0)u0 +
(Tu(k))(t). From

‖u(0)‖(β) = sup
α∈[α∗,α∗], t∈[0,Tλ(α))

(α− α∗ − λt)β‖U(t, 0)u0‖α

≤ sup
α∈[α∗,α∗], t∈[0,Tλ(α))

(α− α∗ − λt)β‖u0‖α

≤ (α∗ − α∗)β‖u0‖α∗ <∞

one easily sees (u(k))k∈N ⊂ Sβ . Therefore, (u(k))k∈N is a fundamental sequence

for λ > λ0 = max

{
M2β+1

β
, λa

}
and hence there exists a limit lim

k→∞
u(k) =

u ∈ Sβ , which solves the equation

u = U(·, 0)u0 + Tu

by definition, which shows (12). This shows the existence of a solution. For
uniqueness let v ∈ Sβ be another solution, then w = u− v solves w = Tw and
therefore w = 0, since T is a contraction.

Remark 2.7.

1. Under some modifications it is clear that a similar result can be stated
for a scale of Banach spaces of type 2.
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2. A similar result for the time independent case was stated in [5]. The
authors have shown the existence of solutions directly by using (9). To
establish uniqueness they have used analyticity at 0 and the formula
dnu

dtn
(0) = Lnu(0). Unfortunately such a formula does not hold for the

time dependent case and due to the properties of the operators it is
not possible to apply the Gronwall Lemma, which is the reason for this
approach.

3. The same considerations as in Remark 2.12.3 hold also here. If we weaken
the assumption ‖U(t, s)‖L(Bα) ≤ 1 to

sup
(t,s)∈Δ

‖U(t, s)‖L(Bα) ≤ C <∞

with Δ =

{
(t, s) ∈

[
0,

α∗ − α∗
λa

]2
: s ≤ t

}
and for some constant C > 0

independent of α, then a similar result holds. More precisely one has

λ0 = min

{
λa,

MC2β+1

β

}
and consequently Remark 2.12.3 still holds. Note that the supremum
always exists, but in general might be not bounded with respect to α.

Similar to the first version one can show ‖u − v‖(β) ≤ C‖u0 − v0‖(β) for
some constant C > 0. Likewise it is possible to show a stronger result con-
cerning continuous dependence of the solutions on parameters. To summarize
we have shown the existence of solutions in scales of Banach spaces under the

condition that either ‖L(t)‖α′α ≤ M

α− α′
holds or L(t) = A(t) + B(t) satisfies

‖B(t)‖α′α ≤ M

α− α′
and A(t) generates an evolution family. For many ap-

plications in interacting particle systems or partial differential equations such
results can be used, cf. [26]. For further developments it is useful to construct
evolution families under more general assumptions or even using the properties
of scales of Banach spaces.

3 Evolutions of interacting particle systems

For motivation we start with an explicit model of interacting particle systems.
Consider a habitat with living individuals, e.g. humans, located in Rd. For
such individuals we would like to model natural birth and death as elementary
events. Now assume that the habitat is contaminated due to some mechanism,
i.e. an atomic catastrophy. Hence the individuals will become sick and die
according to specific rates. For applications one would like to know how this
system will behave in the time evolution. Important questions are concerned
with the possibility of whether the individuals would survive this catastrophy
or not. To model such a system mathematically we will not distinguish between
individuals, meaning that the only important information is the position of the
individual. Therefore a population can be described as a subset γ ⊂ Rd. Since
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we will describe this system in a probabilistic way via Markov evolutions it is
enough to give the formal Markov pre-generator. In this case such generator
has the form

(L(t)F )(γ) =
∑
x∈γ

(m(t) + Pt(x))(F (γ\x)− F (γ))

+

∫
Rd

(∑
y∈γ

at(x− y)

)
(F (γ ∪ x)− F (γ))dx.

Here and in the further chapters we will just write γ ∪ x and γ\x instead of
γ ∪{x} and γ\{x} for brevity. The interpretation is that each individual x ∈ γ
might die due to a space independent mortality rate m(t) ≥ 0 and additionally
to a space dependent rate Pt(x) ≥ 0, which describes the habitat. Further
each individual located at some point y ∈ Rd may produce another individual
located at x ∈ Rd depending on the time dependent birth rate at. In this model
the new individual at point x ∈ Rd immediately may produce new individuals
by themselves. Note that the birth is modeled translation invariant. More
generally one can consider a general birth-and-death process given by

(L(t)F )(γ) =
∑
x∈γ

dt(x, γ\x)(F (γ\x)− F (γ)) +

∫
Rd

bt(x, γ)(F (γ ∪ x)− F (γ))dx.

A general approach to dynamics on configuration spaces was given in [10]
and references therein and [14] contains all necessary technical details for this
approach via correlation functions. In the next section we will give a brief
outline on general birth and death dynamics on configuration spaces. After-
wards we will use the Sourgailis and continuous Contact model to answer the
given questions above. Further sections are devoted to Glauber-type dynamics,
Bolkmann-Dieckmann-Law-Pacala model and general birth and death models.

3.1 General Dynamics on Configuration Spaces

The configuration space Γ over Rd for d ∈ N is defined as the set of all locally
finite subsets of Rd, i.e.

Γ = {γ ⊂ Rd : |γ ∩ Λ| <∞, ∀Λ ⊂ Rd compact }.

We will use the notation γ ∩Λ = γΛ and |γΛ| denotes the cardinality of the set
γΛ. Denote by Γ

(n)
0 = {γ ⊂ Rd : |γ| = n} the space of n-point configurations

and by

Γ0 =

∞⊔
n=0

Γ
(n)
0

the space of all finite configurations. Via the identification

Γ � γ �−→ dγ =
∑
x∈γ

δx ∈ M (Rd)
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one can endow Γ with a topological structure. Here M (Rd) stands for the
space of all Radon measures on Rd. The topology on Γ is the weakest where
all mappings

Γ � γ �−→ 〈ϕ, γ〉 =
∫
Rd

ϕ(x)dγ(x) =
∑
x∈γ

ϕ(x) ∈ R

are continuous for ϕ ∈ Cc(R
d). In [25] the author showed that Γ is a polish

space and gave a characterization of compact subsets of Γ. It is also possible
to define a differentiable structure on Γ and on Γ0, for further aspects see [1].
Using this differential structure it is possible to prove an integration by parts
formula and characterize Gibbs measures, which are the equilibrium states for
the Glauber dynamics. The Poisson measure πz for z > 0 is defined as in [1],
i.e. as the unique probability measure on (Γ,B(Γ)) with the Laplace transform∫

Γ

exp(〈ϕ, γ〉)dπz(γ) = exp

(
z

∫
Rd

(eϕ(x) − 1)dx

)

for ϕ ∈ Cc(R
d). It is also possible to define this measure as a projective limit

using the Kolmogorov theorem for projective limits. The Lebesgue-Poisson
measure λz is defined by

λz =

∞∑
n=0

zn

n!
m(n) = δ{∅} +

∞∑
n=1

zn

n!
m(n),

where m(n) is the image measure of the Lebesgue measure m⊗n on (Rd)n under
the symmetrization-mapping

symn : (̃Rd)
n −→ Γ

(n)
0 , (x1, . . . , xn) �−→ {x1, . . . , xn}

with (̃Rd)n = {(x1, . . . , xn) ∈ (Rd)n : xj �= xk, with j �= k}. For z = 1 we
will write λ = λ1. We call functions F : Γ −→ R observables and functions
G : Γ0 −→ R quasi-observables. The K−Transform, given by

(KG)(γ) =
∑

η⊂γ, |η|<∞
G(η)

defines a new function KG : Γ −→ R for appropriate G : Γ0 −→ R. The inverse
mapping is given by

(K−1F )(η) =
∑
ξ⊂η

(−1)|η\ξ|F (ξ).

Bc(R
d) denotes the set of all Borel sets with compact closure. In [14] it was

shown that the K−transform is bijective between the space of all polynomially
bounded cylindrical functions F , i.e. F (γ) = F (γΛ) for some Λ ∈ Bc(R

d), and
Bbs(Γ0). Where G ∈ Bbs(Γ0) is a bounded function with bounded support, so
there exists N ∈ N and Λ ∈ Bc(R

d) such that

G(η) = 0, ∀η �∈
N⊔

n=0

Γ
(n)
0,Λ
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with

Γ
(n)
0,Λ = {η ∈ Γ0 : η ⊂ Λ, |η| = n}.

Also further properties of the K−transform were studied in [14]. For a mea-
surable function f : Rd −→ R denote by

eλ(f, η) =
∏
x∈η

f(x), eλ(f, ∅) = 1, η ∈ Γ0\{∅}

the Lebesgue exponential eλ(f). The general scheme and all necessary calcula-
tions for dynamics on configuration spaces can be found in [10] and references
therein. Given a Markov pre-generator L the dynamics are described by the
Kolmogorov equation

∂Ft

∂t
= LFt.

The pairing 〈F, μ〉 = ∫
Γ

F (γ)dμ(γ) for F : Γ −→ R and a probability measure

μ ∈ M 1(Γ) allows to consider the dual equation for measures

∂μt

∂t
= L∗μt.

We construe each probability measure μt as a state of the system at time t. So
the time evolution is given by (μt)t≥0. Unfortunately this equation is difficult
to handle. Using the K-Transform it is possible to look at the evolutional
equation for quasi-observables

∂Gt

∂t
= L̂Gt (14)

with L̂ = K−1LK on some set of functions G : Γ0 −→ R, i.e. Bbs(Γ0). Given
a probability measure μ on Γ the K−transform allows to define the correlation
measure ρμ on Γ0 via the identity∫

Γ

(KG)(γ)dμ(γ) =

∫
Γ0

G(η)dρμ(η), G ∈ Bbs(Γ0).

Under some general conditions there exist a one to one correspondence between
measures on Γ and correlation measures, cf. [14]. If ρμ is absolutely continuous
with respect to the Lebesgue-Poisson measure dλ then one defines the correla-

tion function as the Radon-Nikodym derivative kμ =
dρμ
dλ

. Assuming that the

evolution μt has this property ρμt
= kμt

dλ then rewriting equation (14) with
the use of ∫

Γ0

(L̂G)(η)k(η)dλ(η) =

∫
Γ0

G(η)(LΔk)(η)dλ(η)

we arrive at a strong equation for correlation functions kt = kμt

∂kt
∂t

= LΔkt. (15)
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One great simplification is that in the last two equations the functions depend
only on finite configurations. Note that (15) is formulated and will be solved
in the strong sense. Since it was originally obtained as a dual equation it is
possible to consider the weak form and dual evolutions kDt , obtained by the
strong solution of the equation for quasi-observables (14). This analysis was
done, e.g. in [5], but is not the main goal of this work. The first model will give
a brief outline on how to realize this approach. But even having the solution
to (15) it is not clear whether this kt is a correlation function, i.e. corresponds
to an evolution of states. Some further analysis is required. For calculations
the following two formulas will be essential.

Lemma 3.1. For H : Γ0 × Γ0 × Γ0 −→ R and G : Γ0 × Rd −→ R such that
the right-hand sides exist for |G| and |H|, the following formulas hold:∫

Γ0

∑
ξ⊂η

H(ξ, η\ξ, η)dλ(η) =
∫
Γ0

∫
Γ0

H(ξ, η, η ∪ ξ)dλ(ξ)dλ(η)

and ∫
Γ0

∑
x∈η

G(η, x)dλ(η) =

∫
Γ0

∫
Rd

G(η ∪ x, x)dxdλ(η).

There is another technique which can be used to analyze the time evolu-
tion of such continuous interacting particle systems. This approach is based on
generating functionals. All details and proofs for this approach can be found
in [15] and [11]. For a given state μ on Γ one can define the so-called Bogoliubov
generating functional by

Bμ(Θ) =

∫
Γ

∏
x∈γ

(1 + Θ(x))dμ(γ),

provided that the right-hand side exists. Of course the domain of those Θ for
which Bμ(Θ) is well-defined depends on μ itself. The Bogoliubov generating
functional allows to study properties of μ or even the time evolution via func-
tional analytic methods. Assuming μ has finite local exponential moments,
i.e. ∫

Γ

eα|γΛ|dμ(γ) <∞, ∀α > 0, ∀Λ ∈ Bc(R
d)

then the generating functional exists for all bounded functions Θ with com-
pact support. According to general results on configuration spaces there is a
connection to the correlation measure ρμ given by

Bμ(Θ) =

∫
Γ

(Keλ(Θ))(γ)dμ(γ) =

∫
Γ0

eλ(Θ, η)dρμ(η).

If the correlation measure is absolutely continuous with respect to the Lebesgue-
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Poisson measure we can write

Bμ(Θ) =

∫
Γ0

eλ(Θ, η)kμ(η)dλ(η)

=

∞∑
n=0

1

n!

∫
(Rd)n

Θ(x1) · · ·Θ(xn)k
(n)(x1, . . . , xn)dx1 . . . dxn

with symmetric functions k(n) : (Rd)n −→ R+ given by

k(n)(x1, . . . , xn) =

{
kμ({x1, . . . , xn}) , |{x1, . . . , xn}| = n

0 , |{x1, . . . , xn}| < n
.

For μ = πz one has kμ(η) = z|η| and hence

Bμ(Θ) =

∫
Γ0

eλ(zΘ, η)dλ(η) = exp

(
z

∫
Rd

Θ(x)dx

)

=

∞∑
n=0

zn

n!

∫
(Rd)n

Θ(x1) . . .Θ(xn)dx1 . . . dxn

for z ≥ 0. If a functional B admits an such a series expansion it is called
entire. In this approach we will be dealing entire generating functionals. As a
reminder we give the exact definition of an entire functional.

Definition 3.1. A functional B : L1(Rd,C) −→ C is called entire if B is locally
bounded and for all Θ0,Θ ∈ L1 the mapping

C � z �−→ B(Θ0 + zΘ)

is entire. Consequently for each Θ0 ∈ L1 it admits a representation

B(Θ0 + zΘ) =

∞∑
n=0

zn

n!
dnB(Θ0; Θ, . . . ,Θ)

for z ∈ C and Θ ∈ L1, where dnB(Θ0, ·) is a symmetric bounded n-linear form.

In L1 spaces it is possible to represent the differentials dnB by symmetric
kernels δnB ∈ L∞. Note that a similar result does not hold for Lp spaces with
p > 1. The following result was shown in [15].

Theorem 3.2. Let B be an entire functional on L1. Then each differential
dnB(Θ0; ·) can be represented by a symmetric kernel δnB(Θ0, ·) ∈ L∞((Rd)n)
via

dnB(Θ0,Θ1, . . . ,Θn) =

∫
(Rd)n

δnB(Θ0, x1, . . . , xn)Θ1(x1) · · ·Θn(xn)dx1 . . . dxn

for Θ1, . . . ,Θn ∈ L1. Moreover. the operatornorm of dnB(Θ0, ·) coincides with
the norm of δnB(Θ0, ·) and

‖δnB(Θ0, ·)‖L∞((Rd)n) ≤ n!
(e
r

)n
sup
‖Θ′‖≤r

|B(Θ0 +Θ′)|
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holds. We call an entire functional of bounded type if the right-hand side is
finite for each r > 0 and Θ0 ∈ L1.

Applying this to configuration spaces and Bogoliubov generating func-
tionals in [15] the authors showed that the correlation measure is absolutely
continuous with respect to the Lebesgue-Poisson measure λ.

Theorem 3.3. Let μ be a probability measure on Γ and Bμ an entire Bogoliubov
generating functional (short GF) on L1. Then the correlation functions kμ
exists and are given for λ-a.a. η ∈ Γ0 by

kμ(η) = δ|η|Bμ(0; η).

For an entire GF thus the correlation functions can be interpreted as the
Taylor coefficients. Assuming

|Bμ(Θ)| ≤ C exp
(e
r
‖Θ‖L1

)
(16)

for C ≥ 0 and r > 0 it follows

kμ(η) ≤ C
(e
r

)|η|
for λ-a.a η ∈ Γ0. Therefore condition (16) implies the so-called generalized
Ruelle bound, which can be used to show the existence of an evolution of
states. As it was shown in [15], one can rewrite the equation for correlation
functions to a Cauchy Problem

∂Bt

∂t
= L̃Bt, Bt|t=0 = B0,

which may be solved in some scale of Banach spaces. (16) suggests to consider
a scale of Banach spaces of the form

B′α = {B : L1 −→ C : B is entire and ‖B‖α <∞ holds}, (17)

where the norm is given by ‖B‖α = sup
Θ∈L1

|B(Θ)|e−
1

α
‖Θ‖L1

for α > 0. To show

how this general approach can be realized we will analyse the Sourgailis and
continuous Contact model as one of the simplest birth and death models in the
next section.

3.2 Continuous Sourgailis and Contact Model

The continuous Sourgailis model is the simplest model without interaction.
It can be described heuristically by two elementary events birth and death.
Both events can be described by spaces homogeneous rates m = m(t) and
κ = κ(t) ≥ 0. Therefore each particle can die with rate m and at each free site
a new particle can be born with rate κ. The Markov pre-generator for such
model is given by

(L(t)F )(γ) = m(t)
∑
x∈γ

(F (γ\x)− F (γ)) + κ(t)

∫
Rd

(F (γ ∪ x)− F (γ))dx.
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The corresponding expression for L̂(t) on quasi-observables is given by

(L̂(t)G)(η) = −m(t)|η|G(η) + κ(t)

∫
Rd

G(η ∪ x)dx

for G ∈ Bbs(Γ0). For correlation functions we likewise achieve

(LΔ(t)k)(η) = −m(t)|η|k(η) + κ(t)
∑
x∈η

k(η\x)

for appropriate k. The case of time independent coefficients was studied in [3].
The author gave an explicit formula for the solution of (15) and studied the
long time behavior. More precisely, he has proved that the correlation functions
converge to the correlation functions of the invariant state in some proper
Banach space. We will now give a short analysis of the corresponding model
with the time dependent coefficients m = m(t) ≥ 0 and κ = κ(t) ≥ 0. For
this purpose we will always assume that m = sup

t≥0
m(t) is finite and m,κ are

continuous on R+ = [0,∞).

Lemma 3.4. The unique point wise solution of the equation

∂kt
∂t

= LΔ(t)kt, kt|t=0 = k0

is given by

kt(η) = e−|η|M(t)
∑
ξ⊂η

H(t)|ξ|k0(η\ξ), η ∈ Γ0 (18)

where M(t) =
t∫
0

m(s)ds and

H(t) =

t∫
0

κ(s)eM(s)ds.

Define h0 = 1 and hn recursively by the formula

hn(t) = n

t∫
0

κ(s)eM(s)hn−1(s)ds, n ≥ 1.

Then, using

t∫
0

t1∫
0

· · ·
tn−1∫
0

f ′(t1) · · · f ′(tn)dtn · · · dt1 = (f(t)− f(0))n

n!

for a continuously differentiable function f , one can show that hn(t) = H(t)n

holds. Taking into account the definition of the convolution (k1 ∗ k2)(η) =∑
ξ⊂η

k1(ξ)k2(η\ξ), formula (18) takes the form

kt(η) = e−|η|M(t)
(
H(t)|·| ∗ k0

)
(η) =

(
eλ(H(t)e−M(t)) ∗ eλ(e−M(t))k0

)
(η).
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Uniqueness follows from general results on ordinary differential equations and
to show the validity of formula (18) a simple calculation is required, which shall
be omitted.

Let Bα = L∞(Γ0, e−α|·|dλ) with the norm ‖k‖α = ess sup
η∈Γ0

|k(η)|e−α|η|,

which means that each k ∈ Bα is sub-poissonian, i.e. |k(η)| ≤ ‖k‖αeα|η|. Since
eλ
(
H(t)e−M(t)

)
is a correlation function corresponding to πH(t)e−M(t) and by

Lemma 3.9 from [3] also eλ
(
e−M(t)

)
k0 is a correlation function for k0 ∈ Bα for

k0 ∈ Bα we obtain that the convolution kt is a correlation function, so formula
(18) defines an evolution of states μt. Fix some k0 ∈ Bα and assume for this
section κ(t) ≤ zm(t) for t ≥ 0 and some constant z ≥ 0. Then we have

hn(t) = H(t)n =

( n∫
0

κ(s)eM(s)ds

)n

≤ zn
( t∫
0

m(s)eM(s)ds

)n

= zn(eM(t)−1)n.

Hence

|kt(η)| ≤ e−|η|M(t)
∑
ξ⊂η

(z(eM(t) − 1))|ξ||k0(η\ξ)|

≤ ‖k0‖αe−|η|M(t)
∑
ξ⊂η

(z(eM(t) − 1))|ξ|eα|η\ξ|

= ‖k0‖αe−|η|M(t)(z(eM(t) − 1) + eα)|η|

= ‖k0‖α(z(1− e−M(t)) + eαe−M(t))|η|

≤ max{z, eα}|η|‖k0‖α.
For eα ≥ z we obtain |kt(η)| ≤ ‖k0‖αeα|η| and so kt ∈ Bα with ‖kt‖α ≤ ‖k0‖α.
Therefore we have shown that for large α the evolution stays in one Banach
space. In the next step we will show the continuity of t �−→ kt ∈ Bα.

Lemma 3.5. Let α′ be arbitrary and fixed. Suppose, that

z ≤ eα
′
. (19)

Then for any α ∈ R such that

log(2) + α′ < α. (20)

the mapping
R+ � t �−→ kt ∈ Bα′ ⊂ Bα

is continuous on Bα for k0 ∈ Bα′ .

Proof. Let t, t0 ∈ R+. Denote by t∗ = max{t, t0} and t∗ = min{t, t0}. Then,
for ξ ⊂ η using

H(t)n = hn(t) ≤ zn(eM(t) − 1)n ≤ znenM(t)

the following holds

|e−|η|M(t) − e−|η|M(t0)|h|ξ|(t) ≤ z|ξ|e|ξ|M(t)|η|e−|η|M(t∗)|M(t)−M(t0)|
≤ z|ξ||η||M(t)−M(t0)|em|η||t−t0|.
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Hence, for n ∈ N

|hn(t)− hn(t0)| = n

t∗∫
t∗

κ(s)eM(s)hn−1(s)ds ≤ n

t∗∫
t∗

κ(s)eM(s)zn−1e(n−1)M(s)ds.

Using κ(s) ≤ zm(s) the latter expression can be estimated by

nzn
t∗∫

t∗

(
d

ds
eM(s)

)
e(n−1)M(s)ds

= nzn

(
enM(t∗) − enM(t∗) − n− 1

n

t∗∫
t∗

nm(s)enM(s)ds

)

= nzn
(
enM(t∗) − enM(t∗) − n− 1

n

(
enM(t∗) − enM(t∗)

))
= zn(enM(t∗) − enM(t∗)) = zn|enM(t) − enM(t0)|.

For a, b > 0 we use the inequality

|bn − an| ≤ n|b− a|max{a, b}n−1

to obtain

e−|η|M(t0)|h|ξ|(t)− h|ξ|(t0)|
≤ z|ξ|e−|η|M(t0)|e|ξ|M(t) − e|ξ|M(t0)|
≤ z|ξ|e−|η|M(t0)|ξ|

∣∣∣eM(t) − eM(t0)
∣∣∣max{eM(t), eM(t0)

}|ξ|−1
≤ z|ξ||η|

∣∣∣eM(t) − eM(t0)
∣∣∣ e|η|(M(t∗)−M(t0))

≤ z|ξ||η|
∣∣∣eM(t) − eM(t0)

∣∣∣ em|η||t−t0|.

Therefore we have

|kt(η)− kt0(η)|
≤

∑
ξ⊂η

∣∣∣e−|η|M(t)h|ξ|(t)− e−|η|M(t0)h|ξ|(t0)
∣∣∣ |k0(η\ξ)|

≤
∑
ξ⊂η

h|ξ|(t)|e−|η|M(t) − e−|η|M(t0)||k0(η\ξ)|

+
∑
ξ⊂η

e−|η|M(t0)|h|ξ|(t)− h|ξ|(t0)||k0(η\ξ)|

≤ ‖k0‖α′ |η|em|η||t−t0||M(t)−M(t0)|
∑
ξ⊂η

z|ξ|eα
′|η\ξ|

+‖k0‖α′ |η|
∣∣∣eM(t) − eM(t0)

∣∣∣ em|η||t−t0|
∑
ξ⊂η

z|ξ|eα
′|η\ξ|

≤ ‖k0‖α′
(
|M(t)−M(t0)|+

∣∣∣eM(t) − eM(t0)
∣∣∣) |η|em|η||t−t0|

(
z + eα

′)|η|
.
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Now let ε > 0 and take δ > 0 such that for |t− t0| < δ

|M(t)−M(t0)|+
∣∣∣eM(t) − eM(t0)

∣∣∣ < ε

and
log(2) +mδ + α′ < α

holds. According to (19) and (20) we have

emδ−α(z + eα
′
) ≤ 2emδα′−α < 2eα−log(2)−α = 1, (21)

which implies ‖kt − kt0‖α ≤ Const · ε‖k0‖α′ and thus the desired result.
Remark 3.1.

1. It is enough to have the strict inequality for either (19) or (20), cf. (21).

2. This proof also shows that for ξ ⊂ η ∈ Γ0
e−|η|M(t)|h|ξ|(t)− h|ξ|(s)| ≤ z|ξ||η|

∣∣∣eM(t) − eM(s)
∣∣∣ e|η|m|t−s|. (22)

We saw that continuity of the solution requires additional regularity, which
is reflected by the condition α− α′ > log(2). The reason for such difficulties is
due to the fact that we deal with L∞ spaces. In more general models similar
conditions were already used, cf. [5, 8]. To show differentiability we will like-
wise require regularity of initial date, i.e. α − α′ > log(2) + m. The precise
formulation is the content of the next lemma.

Lemma 3.6. For k0 ∈ Bα′ and (19) the mapping

R+ � t �−→ kt ∈ Bα

is continuously differentiable under the condition

m+ log(2) + α′ < α (23)

for t ≥ 0.

Proof. Using the notation h−1(t) = 0 we have for each η ∈ Γ0
LΔ(t)kt(η)

= −|η|m(t)kt(η) + κ(t)
∑
x∈η

kt(η\x)

= −|η|m(t)e−|η|M(t)
∑
ξ⊂η

h|ξ|(t)k0(η\ξ)

+κ(t)
∑
x∈η

∑
ξ⊂(η\x)

e−|η|M(t)eM(t)h|ξ|(t)k0(η\(ξ ∪ x))

= −|η|m(t)e−|η|M(t)
∑
ξ⊂η

h|ξ|(t)k0(η\ξ)

+κ(t)eM(t)
∑
ξ⊂η

∑
x∈ξ

e−|η|M(t)h|ξ|−1(t)k0(η\ξ)

=
∑
ξ⊂η

k0(η\ξ)
(
−|η|m(t)e−|η|M(t)h|ξ|(t) + κ(t)eM(t)|ξ|e−|η|M(t)h|ξ|−1(t)

)
.
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Similar calculations show for h ∈ R such that t+ h, t ≥ 0

kt+h(η)− kt(η)

h

=
1

h

(
e−|η|M(t+h)

∑
ξ⊂η

h|ξ|(t+ h)k0(η\ξ)− e−|η|M(t)
∑
ξ⊂η

h|ξ|(t)k0(η\ξ)
)

=
∑
ξ⊂η

k0(η\ξ)
(
e−|η|M(t+h)h|ξ|(t+ h)− e−|η|M(t)h|ξ|(t)

h

)

=
∑
ξ⊂η

k0(η\ξ)
(
h|ξ|(t+ h)

e−|η|M(t+h) − e−|η|M(t)

h
+ e−|η|M(t)h|ξ|(t+ h)− h|ξ|(t)

h

)
.

The difference
kt+h(η)− kt(η)

h
− LΔ(t)kt(η) has now the form

∑
ξ⊂η

k0(η\ξ)
(
h|ξ|(t+ h)

e−|η|M(t+h) − e−|η|M(t)

h
+ |η|m(t)e−|η|M(t)h|ξ|(t)

)

+
∑
ξ⊂η

k0(η\ξ)
(
e−|η|M(t)h|ξ|(t+ h)− h|ξ|(t)

h
− κ(t)eM(t)|ξ|e−|η|M(t)h|ξ|−1(t)

)

and the multiplicant in the first summand can be rewritten to

h|ξ|(t+ h)
e−|η|M(t+h) − e−|η|M(t)

h
+ |η|m(t)e−|η|M(t)h|ξ|(t)

= h|ξ|(t+ h)

(
e−|η|M(t+h) − e−|η|M(t)

h
+ |η|m(t)e−|η|M(t)

)
+|η|m(t)e−|η|M(t)(h|ξ|(t)− h|ξ|(t+ h)).

Now let ε > 0 and take min{ε, 1} > δ > 0 such that

1.

∣∣∣∣m(t)− M(t+ h)−M(t)

h

∣∣∣∣ < ε

2.
∣∣κ(s)eM(s) − κ(t)eM(t)

∣∣ < ε

3.
∣∣eM(s) − eM(t)

∣∣ < ε

4. (1 + δ)m+ log(2) + α′ < α

holds for |t− s| < |h| < δ. Then we obtain by (22) for such h

|η|m(t)e−|η|M(t)|h|ξ|(t)− h|ξ|(t+ h)| ≤ |η|2m(t)z|ξ|εe|η|mδ.
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The first part can be estimated by

h|ξ|(t+ h)

∣∣∣∣e−|η|M(t+h) − e−|η|M(t)

h
+ |η|m(t)e−|η|M(t)

∣∣∣∣
≤ z|ξ|e|ξ|M(t+h)e−|η|M(t)

∣∣∣∣m(t)|η|+ e−|η|M(t+h)+|η|M(t) − 1

h

∣∣∣∣
≤ z|ξ|e|η|mδ|η|

∣∣∣∣m(t)− M(t+ h)−M(t)

h

∣∣∣∣
+
z|ξ|e|η|mδ

|h|
∞∑
k=2

|η|k
k!
|M(t+ h)−M(t)|k

≤ z|ξ|e|η|mδ|η|ε+ z|ξ|e|η|mδ|h|
∞∑
k=2

|η|k|h|k−2mk

k!

≤ z|ξ|e|η|mδ

(
|η|+

∞∑
k=2

|η|kmk

k!

)
ε

≤ z|ξ|e|η|mδ
(
|η|+ e|η|m

)
ε.

Altogether we have shown

h|ξ|(t+h)
∣∣∣∣e−|η|M(t+h) − e−|η|M(t)

h
+m(t)|η|e−|η|M(t)

∣∣∣∣ ≤ z|ξ|e|η|mδ
(
|η|+ e|η|m

)
ε.

Taking now the sum the first part of the difference
kt+h(η)− kt(η)

h
−LΔ(t)kt(η)

can be estimated by

∑
ξ⊂η

|k0(η\ξ)|
∣∣∣∣h|ξ|(t+ h)

e−|η|M(t+h) − e−|η|M(t)

h
+ |η|m(t)e−|η|M(t)h|ξ|(t)

∣∣∣∣
≤ ‖k0‖α′ε

(
|η|2m(t)e|η|mδ + e|η|mδ(|η|+ em|η|)

)∑
ξ⊂η

z|ξ|eα
′|η\ξ|

= ‖k0‖α′ε
(
|η|2m(t) + |η|+ em|η|

)
e|η|mδ

(
z + eα

′)|η|
≤ ‖k0‖α′eα|η|ε

(|η|2m(t) + |η|+ 1
)
e(1+δ)m|η|−α|η|

(
z + eα

′)|η|
.

Using (1 + δ)m+ log(2) + α′ < α we consequently obtain

e(1+δ)m−α
(
z + eα

′) ≤ 2e(1+δ)m+α′−α < 1

and thus it implies for β ≥ 0

|η|βe((1+δ)m−α)|η|
(
z + eα

′)|η| ≤ Const

pointwise, which gives the desired result. In the same way we estimate the
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second difference with t∗ = min(t, t+ h) and t∗ = max(t, t+ h)∣∣∣∣e−|η|M(t)h|ξ|(t+ h)− h|ξ|(t)
h

− κ(t)eM(t)|ξ|e−|η|M(t)h|ξ|−1(t)
∣∣∣∣

= |ξ|e−|η|M(t)

∣∣∣∣∣∣ 1h
t+h∫
t

κ(s)eM(s)h|ξ|−1(s)ds− κ(t)eM(t)h|ξ|−1(t)

∣∣∣∣∣∣
≤ e−|η|M(t) |ξ|

|h|

t∗∫
t∗

|κ(s)eM(s)h|ξ|−1(s)− κ(t)eM(t)h|ξ|−1(t)|ds.

The integrand can be estimated by∣∣∣κ(s)eM(s)h|ξ|−1(s)− κ(t)eM(t)h|ξ|−1(t)
∣∣∣

≤ κ(s)eM(s)
∣∣h|ξ|−1(s)− h|ξ|−1(t)

∣∣+ h|ξ|−1(t)
∣∣∣κ(s)eM(s) − κ(t)eM(t)

∣∣∣
≤ κem(t+δ)|ξ|z|ξ|−1

∣∣∣eM(t) − eM(s)
∣∣∣ e|η|mδ + εz|ξ|−1e|ξ|M(t)

≤ z|ξ|e|ξ|M(t)ε

(
κem(t+1)

z
|η|e|η|mδ + z−1

)
≤ z|ξ|e|η|M(t)ε

(
κem(t+1)

z
|η|e|η|mδ + z−1

)
with κ = sup

t≥0
κ(t) and thus

e−|η|M(t) |ξ|
|h|

t∗∫
t∗

|κ(s)eM(s)h|ξ|−1(s)− κ(t)eM(t)h|ξ|−1(t)|ds

≤ e−|η|M(t)|ξ|z|ξ|e|η|M(t)ε

(
κem(t+1)

z
|η|e|η|mδ + z−1

)
≤ z|ξ|ε

(
κem(t+1)

z
|η|2e|η|mδ + z−1|η|

)
Now taking the sum

∑
ξ⊂η

we obtain the assertion analogous to the previous

difference.

We are interested in solutions on some Banach spaces Bα. Right now we
have a pointwise solution formula, and under some restrictions, continuity and
differentiability properties for some initial values. It still remains to find some
Banach space such that the solution formula defines a continuous operator,
which is differentiable in some norm on some subspace. From Lemma 3.7 it is
natural to consider this in the norm ‖ · ‖α together with some closed subspace.

Theorem 3.7. For each α′ < α with z ≤ eα
′
and m + log(2) + α′ < α there

exists a family of contraction operators (TΔα′α(t))t≥0 on B := Bα′
‖·‖α

with the
properties
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1. TΔα′α(t) is strongly continuous on B

2. [0, T (α, α′)) � t �−→ TΔα′α(t)k ∈ B is continuously differentiable for k ∈
Bα′ with the derivative

dTΔα′α(t)k

dt
= LΔ(t)TΔα′α(t)k

on B.

Hence for k0 ∈ Bα′ the unique solution of the Cauchy problem

∂kt
∂t

= LΔ(t)kt, kt|t=0 = k0

on B is given by kt = TΔα′α(t)k0 and moreover kt ∈ Bα′ ⊂ Bα.

Note that the family (TΔα′α(t))t≥0 is not a semigroup. Under slight changes
it is possible to give, at least, a heuristic formula for an evolution family
UΔ
α′α(t, s).

Proof. We have shown ‖kt‖α ≤ ‖k0‖α for k0 ∈ Bα′ ⊂ Bα. Hence the densely
defined operator TΔα′α(t)k0 = kt has a unique extension on B, which we denote
again by TΔα′α(t). Strong continuity follows from the contraction property and
Lemma 3.5. Strong differentiability was shown in Lemma 3.7 and therefore for
each k0 ∈ Bα′ there exists a solution given by kt = TΔα′α(t)k0 ∈ Bα′ ⊂ B. The
uniqueness follows from the uniqueness of the pointwise solution formula.

Having the existence of an evolution we will discuss some conditions for
invariant states and convergence to invariant states. One special case is the
time independent dynamics.

Remark 3.2. Assume that m is not integrable, i.e. M(t)→∞ for t→∞, e.g.
if m is periodic.

1. For some initial condition k0 ∈ Bα′ one has the solution

kt(η) = e−|η|M(t)
∑
ξ⊂η

H(t)|ξ|k0(η\ξ).

In the special case k0(η) = eα
′|η| we obtain

kt(η) = e−|η|M(t)
(
H(t) + eα

′)|η|
=
(
H(t)e−M(t) + eα

′
e−M(t)

)|η|
.

Using κ = min
t≥0

κ(t) we obtain

κt ≤ H(t) ≤ z
(
eM(t) − 1

)
and hence(

κte−M(t) + eα
′
e−M(t)

)|η|
≤ kt(η) ≤

(
z + (eα

′ − z)e−M(t)
)|η|

.
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For a general initial condition k0 ∈ Bα′ we obtain by H(t)e−M(t) ≤ z
using the decomposition

kt(η) = e−|η|M(t)k0(η) +H(t)|η|e−|η|M(t)

+
∑

ξ⊂η,ξ =∅,ξ =η

H(t)|ξ|e−|ξ|M(t)k0(η\ξ)e−|η\ξ|M(t)

that the existence of the limit lim
t→∞ kt(η) = k(η) is equivalent to the

existence of the limit lim
t→∞ H(t)e−M(t) = a and we have

k(η) = lim
t→∞ kt(η) = a|η|

for which 0 ≤ a ≤ z holds. So the condition κ(t) ≤ zm(t) and k0 ∈ Bα′

for some α′ ∈ R imply that the limiting state will be always Poissonian,
i.e. πa.

2. Now take k0(η) = eα
′|η| for some α′ ∈ R and assume that the limit

lim
t→∞ H(t)e−M(t) = a exists. Then for each α ∈ R, which satisfies a < eα,

we have kt → eλ(a) for t→∞ in Bα. To show this, let ε > 0 with a �= ε

2
,

a+
ε

2
< eα and take t0 > 0 such that for each t ≥ t0

(a) a− ε

2
≤ H(t)e−M(t) ≤ a+

ε

2

(b) eα
′
e−M(t) ≤ ε

2

(c)
∣∣∣H(t)e−M(t) + eα

′
e−M(t) − a

∣∣∣ ≤ ε

holds. Then the assertion follows from

∣∣∣kt(η)− a|η|
∣∣∣ ≤ |η|

∣∣∣H(t)e−M(t) + eα
′
e−M(t) − a

∣∣∣
max

{
a,H(t)e−M(t) + eα′e−M(t)

}
×max

{
a,H(t)e−M(t) + eα

′
e−M(t)

}|η|
≤ ε|η|max {a, a+ ε}|η|

max
{
a, a− ε

2

}
= ε

1

a− ε

2

eα|η||η|
(
e−α|η|(a+ ε)

)|η|
≤ Const · εeα|η|

for a �= 0. The case a = 0 can be shown analogously.

3. The condition t �−→ κ(t)

m(t)
is mononically increasing implies

H(t) =

t∫
0

κ(s)

m(s)
m(s)eM(s)ds ≤ κ(t)

m(t)
eM(t).
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Hence lim
t→∞

κ(t)

m(t)
= z and moreover

d

dt
H(t)e−M(t) = κ(t)−m(t)H(t)e−M(t) ≥ 0

implies lim
t→∞ H(t)e−M(t) = z. Consequently we have shown

lim
t→∞ kt(η) = lim

t→∞

(
H(t)e−M(t)

)|η|
= z|η|

pointwise for all η ∈ Γ0.

4. Now take z =
κ

m
time independent. Then πz is an invariant state and

for k0(η) = eα
′|η| we obtain

kt(η) = e−|η|M(t)z|ξ|(eM(t) − 1)|ξ|eα
′|η\ξ| =

(
z + (eα

′ − z)e−M(t)
)|η|

.

Therefore the time evolution is Poissonian and converges to the invariant
state πz. We obtain with max{z, eα′} > 0

|kt(η)− kinv(η)| ≤ e−M(t) |z − eα
′ |

max{z, eα′} |η|max{z, e
α′}|η|

and hence kt → kinv in Bα with eα > max{z, eα′}.
5. Now consider m(t) = a > 0 and κ(t) = e−bt, then we obtain

H(t) =

⎧⎨⎩
e(a−b)t − 1

a− b
, a �= b

t , a = b
.

The expression H(t)e−M(t) =
e−bt − e−at

a− b
converges for b > 0 to 0 and

hence kt(η)→ 0|η|, so all particles will die. In the case b < 0 the expres-
sion kt does not have a limit for t→∞.

More generally now let the death rate be space dependent and introduce
some branching, meaning that each particle may produce another new particle.
This model was already described in the introduction and the Markov pre-
generator has for quasi-observables the form

(L̂(t)G)(η) = −m(t)|η|G(η)−
(∑

x∈η
Pt(x)

)
G(η)

+

∫
Rd

∑
y∈η

at(x− y)G((η\y) ∪ x)dx+

∫
Rd

∑
y∈η

at(x− y)G(η ∪ x)dx.

for G ∈ Bbs(Γ0). We consider this model under the assumptions

1. m ≥ 0 is a continuous function on [0, T ] for some T > 0
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2. Pt : R
d −→ R+ with Pt(x) = Pt(−x) satisfies

P• ∈ C([0, T ];L∞(Rd))

3. 0 ≤ at ∈ L1(Rd) ∩ L∞(Rd) with at(x) = at(−x) for t ∈ [0, T ]

4. [0, T ] � t �−→ at ∈ Lp(Rd) is continuous for p = 1,∞.

In such case L̂(t) can be realised as a bounded linear operator L̂(t) ∈ L(B′α,B
′
α′)

for all α′ < α, where B′α = L1(Γ0, e
α|·|dλ) with the norm

‖G‖α =
∫
Γ0

|G(η)|eα|η|dλ(η) =
∞∑

n=0

eαn

n!

∫
(Rd)n

|G(n)(x1, . . . , xn)|dx1 . . . dxn

is a scale of Banach spaces of type 2.

Lemma 3.8. The expression given for L̂(t) defines a bounded linear operator
L̂(t) ∈ L(B′α,B

′
α′) such that the mapping

[0, T ] � t �−→ L̂(t) ∈ L(B′α,B
′
α′)

is continuous in the uniform operator topology for α′ < α.

Proof. For α′ < α it is simple to show

‖L̂(t)‖αα′ ≤ m(t) + ‖Pt‖L∞ + ‖at‖L1

e(α− α′)
+
4‖at‖∞e−α′

e2(α− α′)2
, (24)

which shows the first assertion. Since the operator L̂ depends linearly on the
parameters m,P, a the continuity follows immediately from (24).

In order to solve the equation for quasi-observables it would be sufficient
to show that

(A(t)G)(η) =

∫
Rd

∑
x∈η

at(x− y)G(η ∪ x)dy

generates for each t ∈ [0, T ] a C0-semigroup such that Theorem 2.1 and 2.3 are
applicable. The existence of a C0-semigroup was proved in [5] for more general
dynamics. Therefore we will realise this approach in the section 3.3. Instead
we will turn to correlation functions and solve the corresponding equation for
the particle densities. For correlation functions the following representation of
LΔ(t) holds for appropriate G and correlation functions k satisfying k(η) ≤
|η|C |η|, cf. [18],

(LΔ(t)k)(η) = −|η|m(t)k(η)−
∑
x∈η

Pt(x)k(η)

+
∑
x∈η

∑
y∈(η\x)

k(η\x)at(x− y) +
∑
x∈η

∫
Rd

at(x− y)k((η\x) ∪ y)dy.
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Analogous to previous calculations one can show that LΔ(t) satisfies the same
bound as in (24) and continuity. To analyse the long time behavior of this sys-
tem we will consider only the first correlation function, which can be construed
as a density. For η = {x} the corresponding equation takes the form

∂k
(1)
t (x)

∂t
= −m(t)k(1)t (x)− Pt(x)kt(x) +

∫
Rd

at(x− y)k
(1)
t (y)dy

≤ −(m+ P (x))k
(1)
t (x) + z

∫
Rd

at(x− y)dy

= −M(x)k
(1)
t (x) + zκ(t)

with κ(t) =
∫
Rd

at(y)dy ≥ 0, M(x) = m + P (x), m = inf
t≥0

m(t) ≥ 0, P (x) =

inf
t≥0

Pt(x) ≥ 0 and the assumption kt(x) ≤ z. This leads to the bound

k
(1)
t (x) ≤ e−M(x)tk0(x) + ze−M(x)t

t∫
0

κ(s)eM(x)sds

for the solution k
(1)
t (x). If κ asymptotically has exponential decay, then clearly

k
(1)
t (x) → 0, t → ∞ holds for M(x) > 0. Of course our approach and our
assumptions have simplified the situation a lot. For more specific properties
more detailed analysis is required. In applications one would use computer
simulations instead of solving the equations explicitly or at least asymptotically.
To show the existence of a solution we will work in the space

XT = C([0, T ];L∞(Rd)), ‖v‖T = sup
(t,x)∈[0,T ]×Rd

|vt(x)| = sup
t∈[0,T ]

‖vt‖L∞ (25)

and denote the closed cone of all non-negative functions v ∈ XT by X+
T . For

T ′ < T one has the natural embedding XT ′ ⊂ XT , where XT ′ is a closed
subspace.

Lemma 3.9. Let A ∈ X+
T , 0 ≤ at ∈ L1(Rd) for t ∈ [0, T ] and assume (t, x) �−→

at(x) ≥ 0 is measurable with

sup
t∈[0,T ]

∫
Rd

at(x)dx = a <∞.

Then the equation

∂kt(x)

∂t
= −A(t, x)kt(x) + (at ∗ kt)(x), kt|t=0 = k0 ∈ L∞(Rd) (26)

has a unique non-negative solution kt ∈ L∞(Rd) for k0 ≥ 0 and t ∈ [0, T̃ ) with

T̃ =

⎧⎨⎩T , a = 0,

min

{
T,
1

a

}
, a > 0

.

This solution satisfies 0 ≤ k• ∈ C1([0, T ′];L∞(Rd)) for each T ′ < T̃ .
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Proof. Define the mapping Φ : XT ′ −→ XT ′ given by

(Φv)t(x) = exp

(
−

t∫
0

A(s, x)ds

)
k0(x) +

t∫
0

exp

(
−

t∫
s

A(τ, x)dτ

)
(as ∗ vs)(x)ds

for T ′ < T̃ . Clearly Φ is positivity preserving and by

|(as ∗ vs)(x)| ≤ (as ∗ |vs|)(x) ≤ ‖as‖L1‖vs‖L∞ ≤ a‖v‖T ′
we obtain

|(Φv)t(x)| ≤ k0(x) +

t∫
0

exp

(
−

t∫
s

A(τ, x)dτ

)
|as ∗ vs|(x)ds

≤ ‖k0‖L∞ +

t∫
0

a‖v‖T ′ds

≤ ‖k0‖L∞ + T ′a‖v‖T ′
and hence Φv ∈ XT ′ for v ∈ XT ′ , note that t �−→ (Φv)t ∈ L∞(Rd) is continu-
ous. In the same way

|(Φv)t(x)−(Φw)t(x)| ≤
t∫
0

exp

(
−

t∫
s

A(τ, x)dτ

)
(as∗|vs−ws|)(x)ds ≤ T ′a‖v−w‖T ′

implies that Φ has the contraction property. Thus the sequence (v(n))n∈N ⊂
X+

T ′ given by v(0) = k0 and v(n+1) = Φv(n) is a fundamental sequence and
hence has a limit v = lim

n→∞ v(n) ∈ X+
T ′ . Consequently v = Φv, i.e.

vt(x) = exp

(
−

t∫
0

A(s, x)ds

)
k0(x)+

t∫
0

exp

( t∫
s

A(τ, x)dτ

)
(as ∗ vs)(x)ds (27)

for a.a. x ∈ Rd holds, which shows the existence of a solution to (26). Since
every solution of (26) solves (27) the uniqueness follows for t ∈ [0, T ′] and hence
on [0, T̃ ).

Corollary 3.10. Let A ∈ X+
T for each T > 0 and 0 ≤ at ∈ L1(Rd) for t ≥ 0,

(t, x) �−→ at(x) ≥ 0 be measurable and assume

sup
t≥0

∫
Rd

at(x)dx = a <∞

Then the equation

∂kt(x)

∂t
= −A(t, x)kt(x) + (at ∗ kt)(x), kt|t=0 = k0 ∈ L∞(Rd)

has a unique non-negative solution kt ∈ L∞(Rd) for k0 ≥ 0 and t ≥ 0. More-
over k• ∈ C1([0, T ];L∞(Rd)) holds for each T > 0.
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Proof. Under this assumption one can take T̃ =
1

a
and hence consider itera-

tively the same Cauchy problem with initial conditions kt|t=0 = klT ′ with l ∈ N

and T ′ <
1

a
.

In order to apply Lemma 3.11 we need

ess sup
(t,x)∈[0,T ]×Rd

m(t) + Pt(x) <∞

and

sup
t∈[0,T ]

∫
Rd

at(x)dx = a <∞.

Both conditions are satisfyied since 0 ≤ m ∈ C([0, T ]), P• ∈ C([0, T ];L∞(Rd))
and a• ∈ C([0, T ];Lp(Rd)) for p = 1,∞. Hence there exists a unique solution
to the equation for densities.

3.3 Bolker-Dieckman-Law-Pacala Model

In this section we will discuss an ecological birth and death model. Each in-
dividual may die due to a space independent mortality rate m and due to
competition of individuals. This competition is described translation invariant
by a competition kernel a−, i.e a−(x, y) ≡ a−(x− y) = a−(y− x). High values
for a− lead to high probabilities of death. Analogously each individual can
produce another individual, where the probability distribution of this elemen-
tary event is given by the dispersion kernel a+. Therefore we can describe this
model by the following Markov pre-generator

(LF )(γ) =
∑
x∈γ

(m+E−(x, γ\x))(F (γ\x)−F (γ))+
∫
Rd

E+(y, γ)(F (γ∪y)−F (γ))dy

with m > 0 and E±(x, γ) =
∑
y∈γ

a±(x − y). This model was discussed in [5],

where the authors proved local existence of solutions for quasi-observables, and
correlation functions. Moreover the existence of evolution of states was shown.
In this section we will prove the existence of solutions for quasi-observables in
the time dependent case, i.e.

(L(t)F )(γ) =
∑
x∈γ

(m(t) + E−t (x, γ\x))(F (γ\x)− F (γ))

+

∫
Rd

E+
t (y, γ)(F (γ ∪ y)− F (γ))dy

under the following assumptions for T > 0

1. m is a continuous non-negative function in t ∈ [0, T ]
2. The dispersion and competition kernels a±t (x) = a±t (−x) ≥ 0 are contin-

uous as mappings

[0, T ] � t �−→ a±t ∈ L∞(Rd), [0, T ] � t �−→ a±t ∈ L1(Rd).
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3. There exists a Θ > 0 such that

a+t (x) ≤ Θa−t (x) (28)

holds for all t ∈ [0, T ] and almost all x ∈ Rd.

The last condition (28) means that the dispersion kernel is dominated by the
competition kernel uniformly in the time t ∈ [0, T ]. The corresponding operator
for quasi-observables is formally given by the expressions

L̂(t) = A(t) +B(t)

with

A(t) = A1(t) +A2(t)

(A1(t)G)(η) = −Et(η)G(η)

(A2(t)G)(η) =

∫
Rd

E+
t (y, η)G(η ∪ y)dy

and

B(t) = B1(t) +B2(t)

(B1(t)G)(η) = −
∑
x∈η

E−t (x, η\x)G(η\x)

(B2(t)G)(η) =

∫
Rd

∑
x∈η

a+t (x− y)G(η\x ∪ y)dy,

where Et(η) =
∑
x∈η

(m(t) + E−t (x, η\x)) = m(t)|η| + E−t (η) and E±t (η) =∑
x∈η

E±t (x, η\x). As usual we will work in the scale B′α = L1(Γ0, e
α|·|dλ), then

a simple calculation shows the following result.

Lemma 3.11. The above expressions define linear bounded operators A,B ∈
L(B′α,B

′
α′) for α′ < α with norm estimates

‖A(t)‖αα′ ≤ m(t)

e(α− α′)
+
4(‖a−t ‖L∞ + ‖a+t ‖L∞e−α′)

e2(α− α′)2
(29)

and

‖B(t)‖αα′ ≤ ‖a−t ‖L1eα
′
+ ‖a+t ‖L1

e(α− α′)
. (30)

In view of Theorem 2.10 we have as a consequence of (30) that ‖B(t)‖αα′ ≤
M

α− α′
for some constant M = M(α∗, α∗) if we fix α∗ < α∗, cf. Definition 5.

Since we cannot apply Theorem 2.10 for the operator A, c.f. (29), the next
step for us will be to prove existence of an evolution family corresponding to
A in order to apply Theorem 2.13. But first we need to show the continuity
of t �−→ A(t) and t �−→ B(t) in the uniform operator topology. For α < α′

consider the mappings

R+ ×X+ ×X+ −→ L(B′α,B
′
α′), (m, a+, a−) �−→ L̂(m, a+, a−). (31)
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with

X = {f ∈ L1(Rd) ∩ L∞(Rd) : f(x) = f(−x), for a.a. x ∈ Rd}.
Here X+ denotes the positive cone of X consisting of all elements 0 ≤ f ∈ X.
The previous Lemma shows, that this map is well-defined. Endow X with the
norm

‖f‖X = max{‖f‖L1 , ‖f‖L∞}
so (X, ‖ · ‖X) is a closed subspace of the Banach space L1(Rd) ∩ L∞(Rd) and
thus a Banach space itself. If we define on the parameter space R+×X+×X+

the metric

d((m, a+, a−), (m′, b+, b−)) = |m−m′|+ ‖a+ − b+‖X + ‖a− − b−‖X
the following result holds.

Lemma 3.12. For α′ < α the mapping (31) is continuous, where L(B′α,B
′
α′)

has the topology induced by the operator norm.

Proof. Since L̂ depend linearly on the coefficients m, a+, a− we obtain from
Lemma 3.13

‖L̂(m, a+, a−)− L̂(m′, b+, b−)‖αα′

≤ 4‖a− − b−‖L∞ + 4‖a+ − b+‖L∞e−α′

e2(α− α′)2

+
|m−m′|+ ‖a− − b−‖L1eα

′
+ ‖a+ − b+‖L1

e(α− α′)
.

The continuity of m, a+, a− imply the continuity of

[0, T ] � t �−→ (m(t), a+t , a
−
t ) ∈ R+ ×X+ ×X+

and as a consequence we obtain the desired continuity of

[0, T ] � t �−→ A(t), [0, T ] � t �−→ B(t)

in the uniform operator topology on L(B′α,B
′
α′). Now we are prepared to prove

the existence of an evolution family corresponding to A(t).

Theorem 3.13. Let α∗ be such that Θe−α∗ < 1 holds. Then for all α∗ ≤ α′ <
α there exists a unique evolution family (Û(t, s))0≤s≤t≤T on B′α′ satisfying

1.
∂Û

∂t
(t, s)G = A(t)Û(t, s)G on Bα′ for G ∈ B′α, in the case of t = s the

derivative is meant to be a right-sided derivative.

2.
∂Û

∂s
(t, s)G = −Û(t, s)A(s)G on Bα′ for G ∈ B′α.

Proof. By [5] for each α∗ ≤ α′ there exists a sub stochastic analytic C0-
semigroup Sα′

t (τ) = eτA(t) on B′α′ . The generator is given by (A(t), Dα′(A(t)))
with

Dα′(A(t)) = {G ∈ B′α′ : Et(·)G(·) ∈ B′α′}.
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For α∗ ≤ α′ < α the part Ã(t) of (A(t), Dα′(A(t))) on B′α is given by

D(Ã(t)) = {G ∈ B′α ∩Dα′(A(t)) : Et(·)G(·) ∈ B′α}
= {G ∈ B′α : Et(·)G(·) ∈ B′α} = Dα(A(t))

and hence is a generator of a substochastic analytic semigroup, which shows
the assumptions of Theorem 2.1. Therefore for α∗ ≤ α′ < α the semigroups
satisfy

Sα
t (τ) = Sα′

t (τ)|B′α , ∀t ∈ [0, T ] and τ ≥ 0.

Concerning the proof of Theorem 2.1, cf. [24], the evolution families are ob-
tained as limits Ûα(t, s) = lim

n→∞ Ûα
n (t, s) in B′α. Since U

α
n (t, s) is a composition

of Sα
t (τ)

Ûα
n (t, s) = Ûα′

n (t, s)|B′α , (t, s) ∈ Δ
for α∗ ≤ α′ < α follows. To show the property

Ûα(t, s) = Ûα′(t, s)|B′α (32)

consider for G ∈ B′α

‖Ûα(t, s)G− Ûα′(t, s)G‖α′
≤ ‖Ûα(t, s)G− Ûα

n (t, s)G‖α′ + ‖Ûα
n (t, s)G− Ûα′(t, s)G‖α′

≤ ‖Ûα(t, s)G− Ûα
n (t, s)G‖α + ‖Ûα′

n (t, s)G− Ûα′(t, s)G‖α′

and take n → ∞. Hence Ûα(t, s)G = Ûα′(t, s)G in B′α′ and therefore by
definition of the norm also pointwise for a.a. η ∈ Γ0, which implies (32) in
B′α. Now (32) implies the conditions for Theorem 2.3 and hence the desired
result.

Corollary 3.14. Let α∗ be such that Θe−α∗ < 1 and fix some α∗ > α∗. Then
there exists a continuous function T (α) monotonically decreasing and for each
G0 ∈ B′α∗ a unique solution Gt of

dGt

dt
= L̂(t)Gt, Gt|t=0 = G0

in the scale B′α given by Remark 2.15.3.

3.4 Glauber-type Dynamics in Continuum

The non-equilibrium Glauber-type dynamics can be described by the heuristic
Markov pre-generator

(LF )(γ) = m
∑
x∈γ

(F (γ\x)− F (γ)) + z

∫
Rd

(F (γ ∪ x)− F (γ)) exp(−E(x, γ))dx.

Let φ : Rd −→ R+ be an even non-negative function. For any γ ∈ Γ, x ∈ Rd\γ
we set E(x, γ) =

∑
y∈γ

φ(x−y) ∈ [0,∞]. Here z > 0 is an activity parameter and

m > 0 is a mortality rate. As before each particle may die according to the
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rate m. New particles are influenced by existing particles, which is described
by the potential φ. Big values of φ lead to a small factor e−E(x,γ) and hence to
smaller probabilities for new particles to appear in the regions where E(x, γ)
is big. The operator for quasi-observables is given by

(L̂G)(η) = −|η|mG(η) + z
∑
ξ⊂η

∫
Rd

e−E(x,ξ)G(ξ ∪ x)eλ(e
−φ(x−·) − 1, η\ξ)dx.

The existence of a C0-semigroup associated to L̂ was shown in [17]. In [6], it
was proven that this semigroup can be approximated uniformly on compact
time intervals using discretization of time. Solutions in scales of Banach spaces
were studied in [4] and [11]. This part will partially generalize the results to
time dependent coefficients. Likewise the evolution of correlation functions and
states will be studied. The evolution equation for correlation functions is given
by the operator

(LΔk)(η) = −|η|mk(η) + z
∑
x∈η

e−E(x,η\x)
∫
Γ0

eλ(tx, ξ)k((η\x) ∪ ξ)dλ(ξ) (33)

with tx(y) = e−φ(x−y)−1. In [6] the existence of correlation function evolution
was proven by discretization and further ergodicity properties were studied.
We will be concerned with the time dependent case z = z(t),m = m(t) and
φ = φt. Starting again with the equation for quasi-observables in the scale
B′α = L1(Γ0, e

α|·|) of type 2 we will impose the following conditions to hold for
some T > 0

1. [0, T ] � t �−→ z(t) ≥ 0, [0, T ] � t �−→ m(t) ≥ 0 are continuous;

2. φt(x) = φt(−x) ≥ 0 is a continuous mapping in the sense that

[0, T ] � t �−→ φt ∈ L∞(Rd), [0, T ] � t �−→ φt ∈ L1(Rd)

is continuous;

3. there exists a potential φ(x) = φ(−x) ≥ 0 such that φt(x) ≤ φ(x) and

β =

∫
Rd

(1− e−φ(x))dx <∞.

Note that 3. implies 1− e−φt(x−·) ≤ 1− e−φ(x−·) and hence
∫
Rd

1− e−φt(x)dx =

βt ≤ β < ∞. The last condition is important to have uniform bounds in the
time variable t. As a first step we will show continuity properties of

(L̂(t)G)(η) = −|η|m(t)G(η) (34)

+z(t)
∑
ξ⊂η

∫
Rd

e−Et(x,ξ)G(ξ ∪ x)eλ(e
−φt(x−·) − 1, η\ξ)dx.
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Lemma 3.15. Under conditions 1-3. expression (34) defines a bounded linear
operator L̂(t) ∈ L(B′α,B

′
α′) for α′ < α satisfying

‖L̂(t)‖αα′ ≤
m(t) + z(t) exp

(
eα
′
βt

)
e−α′

e(α− α′)
.

Further the mapping [0, T ] � t �−→ L̂(t) ∈ L(B′α,B
′
α′) is continuous in the

uniform operator topology.

Proof. For α′ < α and G ∈ B′α we obtain∫
Γ0

∑
ξ⊂η

∫
Rd

e−Et(x,ξ)eλ(|tx|, η\ξ)|G(ξ ∪ x)eα
′|η|dxdλ(η)

=

∫
Γ0

∫
Γ0

∫
Rd

e−Et(x,ξ)eλ(|tx|; η)|G(ξ ∪ x)|eα′|η|eα′|ξ|dxdλ(ξ)dλ(η)

≤ exp
(
eα
′
βt

)∫
Γ0

∫
Rd

|G(ξ ∪ x)|eα′|ξ|dxdλ(ξ)

≤
exp

(
eα
′
βt

)
e−α′

e(α− α′)
‖G‖α

which shows the first assertion. For the second part of the assertion of the
lemma take G ∈ B′α and t, s ∈ [0, T ], then we have for the death part

|m(t)−m(s)|
∫
Γ0

|η||G(η)|eα′|η|dλ(η) ≤ |m(t)−m(s)|
e(α− α′)

‖G‖α,

which has the desired property. The birth part can be estimated by (+)

z(t)

∫
Γ0

∫
Γ0

∫
Rd

∣∣∣eλ(1− e−φt(x−·), η)− eλ(1− e−φs(x−·), η)
∣∣∣

×|G(ξ ∪ x)|eα′|η∪ξ|dxdλ(ξ)dλ(η)
+ z(t)

∫
Γ0

∫
Γ0

∫
Rd

eλ(1− e−φs(x−·), η)
∣∣∣e−Et(x,ξ) − e−Es(x,ξ)

∣∣∣
×|G(ξ ∪ x)|eα′|η∪ξ|dxdλ(ξ)dλ(η)

+ |z(t)− z(s)|
∫
Γ0

∫
Γ0

∫
Rd

eλ(1− e−φs(x−·), η)|G(ξ ∪ x)|eα′|η∪ξ|dxdλ(ξ)dλ(η).

Using ∣∣∣eλ(e−φt(x−·) − 1, η)− eλ(e
−φs(x−·) − 1, η)

∣∣∣
≤

∑
y∈η

|e−φt(x−y) − e−φs(x−y)|eλ(1− e−φ(x−·), η\y)

≤
∑
y∈η

|φt(x− y)− φs(x− y)|eλ(1− e−φ(x−·), η\y)
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we estimate the first part of (+) by

z(t)

∫
Γ0

∫
Rd

∫
Γ0

∑
y∈η

|φt(x− y)− φs(x− y)|eλ(1− e−φ(x−·), η\y)

×|G(ξ ∪ x)|eα′|η∪ξ|dλ(η)dxdλ(ξ)
= z(t)eα

′‖φt − φs‖L1

∫
Γ0

∫
Rd

∫
Γ0

eλ(1− e−φ(x−·), η)eα
′|η|dλ(η)

×|G(ξ ∪ x)|eα′|ξ|dxdλ(ξ)
= z(t)eα

′‖φt − φs‖L1 exp(eα
′
β)

∫
Γ0

∫
Rd

|G(ξ ∪ x)|eα′|ξ|dxdλ(ξ)

≤ z(t)‖φt − φs‖L1 exp(eα
′
β)

e(α− α′)
‖G‖α.

Because of∣∣∣e−Et(x,ξ) − e−Es(x,ξ)
∣∣∣ ≤ |Es(x, ξ)− Et(x, ξ)| ≤ |ξ|‖φt − φs‖L∞

we obtain for the second part of (+)

z(t)‖φt − φs‖∞
∫
Γ0

∫
Γ0

∫
Rd

eλ(1− e−φs(x−·), η)eα
′|η|

×|G(ξ ∪ x)||ξ|eα′|ξ|dxdλ(ξ)dλ(η)
≤ z(t)‖φt − φs‖∞ exp(eα

′
βs)e

−α′
∫
Γ0

|ξ|2|G(ξ)|eα′|ξ|dλ(ξ)

≤ 4z(t)‖φt − φs‖∞e−α′

e2(α− α′)2
exp(eα

′
βs)‖G‖α.

For the last part of (+) we get

|z(t)− z(s)|
∫
Γ0

∫
Γ0

∫
Rd

eλ(1− e−φs(x−·), η)|G(ξ ∪ x)|eα′|ξ|eα′|η|dxdλ(ξ)dλ(η)

≤ |z(t)− z(s)|e−α′

e(α− α′)
exp(eα

′
βs)‖G‖α

which proves the assertion.

Since ‖L̂(t)‖α′α ≤ M

α− α′
, with

M =
m+ z exp

(
eα
′
β
)
e−α′

e

m = sup
t≥0

m(t) and z = sup
t≥0

z(t) we can apply Theorem 2.10 and prove the

existence of solutions in the scale B′α. For the time independent parameters
the existence was proved directly in [4].
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Theorem 3.16. Under conditions 1-3. and for fixed α∗ < α∗ there exists
T : [α∗, α∗) −→ [0, T ] continuous and monotonically decreasing, such that for
each G0 ∈ B′α∗ = L1(Γ0, e

α|·|dλ) there exists a unique solution Gt to the Cauchy
problem

∂Gt

∂t
= L̂(t)Gt, Gt|t=0 = G0 (35)

in the scale B′α given by Remark 2.12.3

Proof. Lemma 3.18 implies

‖L̂(t)‖αα′ ≤
m(t) + z(t) exp

(
eα
′
βt

)
e−α′

e(α− α′)

≤ m+ z exp
(
eα
∗
β
)
e−α∗

e(α− α′)

with m = sup
t∈[0,T ]

m(t) and z = sup
t∈[0,T ]

z(t), which shows the first assumption

of Theorem 2.10. Since continuity in the uniform operator topology implies
strong continuity Theorem 2.10 is applicable and shows the existence of unique
solutions to (35).

Likewise using the same techniques we can prove existence of solutions
for the corresponding equations for correlation functions, c.f. (33). First we
show general properties of operators LΔ(t) in the scale of Banach spaces Bα =
L∞(Γ0, e−α|·|dλ).

Lemma 3.17. Under conditions 1-3. the expression

(LΔ(t)k)(η) = −|η|m(t)k(η)
+z(t)

∑
x∈η

e−Et(x,η\x)
∫
Γ0

eλ(e
−φt(x−·) − 1, ξ)k((η\x) ∪ ξ)dλ(ξ)

defines an operator LΔ(t) ∈ L(Bα′ ,Bα) for α′ < α such that

‖LΔ(t)‖α′α ≤ m(t) + z(t)e−α′ exp(eα
′
βt)

e(α− α′)
.

Moreover, the mapping [0, T ] � t �−→ LΔ(t) ∈ L(Bα′ ,Bα) is continuous in the
uniform operator topology.

Proof. Let α′ < α and k ∈ Bα′ be fixed, then the first summand gives

|η|m(t)|k(η)|e−α|η| ≤ m(t)‖k‖α′ |η|e−(α−α′)|η| ≤ m(t)

e(α− α′)
‖k‖α′
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and for the second part

z(t)
∑
x∈η

e−Et(x,η\x)
∫
Γ0

eλ(1− e−φt(x−·), ξ)|k(η\x ∪ ξ)|dλ(ξ)e−α|η|

≤ z(t)‖k‖α′e−α′e−(α−α′)|η|∑
x∈η

∫
Γ0

eλ(1− e−φt(x−·), ξ)eα
′|ξ|dλ(ξ)

= z(t)‖k‖α′e−α′ |η|e−(α−α′)|η| exp(eα
′
βt) ≤ z(t)e−α′ exp(eα

′
βt)

e(α− α′)
‖k‖α′ .

Thus the first claim is proved. For the second part let t, s ∈ [0, T ] be arbitrary,
then the death part can be estimated by

|η||m(t)−m(s)|e−α|η||k(η)| ≤ |m(t)−m(s)||η|e−(α−α′)|η|‖k‖α′ ≤ |m(t)−m(s)|
e(α− α′)

‖k‖α′ .

Analogously to Lemma 3.18 the birth part can be estimated by

|z(t)− z(s)|
∑
x∈η

e−Et(x,η\x)
∫
Γ0

eλ(1− e−φt(x−·), ξ)|k(η\x ∪ ξ)|dλ(ξ)e−α|η|

+z(s)
∑
x∈η

∣∣∣e−Et(x,η\x) − e−Es(x,η\x)
∣∣∣

×
∫
Γ0

eλ(1− e−φt(x−·), ξ)|k(η\x ∪ ξ)|dλ(ξ)e−α|η|

+z(s)
∑
x∈η

e−Es(x,η\x)

×
∫
Γ0

∣∣∣eλ(1− e−φt(x−·), ξ)− eλ(1− e−φs(x−·), ξ)
∣∣∣ |k(η\x ∪ ξ)|dλ(ξ)e−α|η|.

The first summand can be bounded by

|z(t)− z(s)|e−α′ |η|e−(α−α′)|η| exp(eα
′
βt)‖k‖α′

≤ |z(t)− z(s)|e−α′ exp(eα
′
β)

e(α− α′)
‖k‖α′

and the second one by

z(s)‖φt − φs‖∞e−α′ |η|2e−(α−α′)|η| exp(eα
′
βt)‖k‖α′

≤ 4z(s)‖φt − φs‖∞ exp(eα
′
βt)

e2(α− α′)2
‖k‖α′ .

As a result they have desired property. For the last term we have the following



On nonautonomous Markov evolutions in continuum 53

estimate

z(s)
∑
x∈η

∫
Γ0

∑
y∈ξ

|φt(x− y)− φs(x− y)|eλ(1− e−φ(x−·), ξ\y)|k(η\x ∪ ξ)|e−α|η|dλ(ξ)

≤z(s)‖k‖α′e−(α−α′)|η|‖φt − φs‖L1

∑
x∈η

∫
Γ0

eλ(1− e−φ(x−·), ξ)eα
′|ξ|dλ(ξ)

≤z(s)‖φt − φs‖L1 exp(eα
′
β)

e(α− α′)
‖k‖α′

which shows the continuity.

As a consequence, by Theorem 2.10 we obtain the existence of local solu-
tions.

Theorem 3.18. Fix some α∗ < α∗, then there exists T : (α∗, α∗] −→ [0, T ]
continuous and monotonically increasing such that for each k0 ∈ Bα∗ there
exists a unique solution kt to the Cauchy problem

∂kt
∂t

(t) = LΔ(t)kt, kt|t=0 = k0 (36)

in the scale Bα given by Remark 2.12.3.

To have the existence of a solution via evolution families it is sufficient
to show that the operators LΔ(t) generate contraction semigroups TΔt (s) for
t ∈ [0, T ]. Since the scale Bα is of L∞-type it is not straightforward. The
general approach is to consider the dual semigroups and show the existence
of appropriate invariant subspaces. This analysis could be done, but is not
the purpose of this work. Instead we will consider the evolution of Bogoliubov
generating functionals. The fact that

sup
x∈Rd

∣∣∣∣ehx − 1

h
− x

∣∣∣∣ =∞, ∀h > 0

causes difficulties in many calculations. Therefore we will only consider the sim-
plified model with the time independent potential φ. Letm and z be continuous
functions on some interval I = [0, T ] and φ(x) = φ(−x) ≥ 0 be integrable, i.e.,

β =

∫
Rd

1− e−φ(x)dx ≤
∫
Rd

φ(x)dx = ‖φ‖L1 .

In [11] it was shown, that the generator L̃(t) for fixed t ∈ [0, T ] is given by

(L̃(t)B)(Θ) = −
∫
Rd

Θ(x)
(
m(t)δB(Θ;x)− z(t)B(Θe−φ(x−·) + e−φ(x−·) − 1)

)
dx

= m(t)(L0B)(Θ) + z(t)(L1B)(Θ)

with

(L0B)(Θ) = −
∫
Rd

Θ(x)δB(Θ;x)dx
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and

(L1B)(Θ) =

∫
Rd

Θ(x)B
(
Θe−φ(x−·) + e−φ(x−·) − 1)

)
dx.

It is a simple matter to show that

‖L̃(t)‖αα′ ≤
α∗
(
m(t) + z(t)α∗ exp

(‖φ‖L1

α∗
− 1

))
α− α′

(37)

where the norm of the operator is taken in L(B′α,B
′
α′) with α∗ ≤ α′ < α ≤ α∗

and B′α is defined in (17). This bound was shown in [11] for the case m ≡ 1.

Theorem 3.19. Let m, z be continuous on [0, T ] and 0 ≤ φ ∈ L1(Rd) be
symmetric. Then for each fixed 0 < α∗ < α∗ there exists a continuous and
monotonically decreasing function T : [α∗, α∗) −→ [0, T ] such that for each
B0 ∈ B′α∗ there exists a unique solution Bt of the Cauchy problem

∂Bt

∂t
= L̃(t)Bt, Bt|t=0 = B0

in the scale B′α given by Remark 2.12.3.

Proof. Previous results, cf. (37), show that ‖L̃(t)‖αα′ ≤ M

α− α′
for some con-

stant M > 0 independent of t ∈ [0, T ]. Strong continuity follows from the
inequality

‖L̃(t)B − L̃(s)B‖α′ ≤ |m(t)−m(s)|‖L0B‖α′ + |z(t)− z(s)|‖L1B‖α′

for α′ < α, t, s ∈ [0, T ], B ∈ B′α and the fact L0, L1 ∈ L(B′α,B
′
α′), which was

shown in [11]. An application of Theorem 2.10 shows the existence of a unique
evolution Bt in the scale B

′
α.

3.5 General birth-and-death dynamics

The aim of the last section is to prove the existence of solutions for the evolu-
tion of quasi-observables for the general birth-and-death dynamics heuristically
given by the Markov pre-generator

(L(t)F )(γ) = m(t)
∑
x∈γ

d(x, γ\x)(F (γ\x)− F (γ))

+κ(t)

∫
Rd

b(x, γ)(F (γ ∪ x)− F (γ))dx.

For time independent m and κ this model was discussed recently in [8]. Un-
der some conditions the authors proved the existence of evolution for quasi-
observables via semigroup techniques. We will use this result together with
Theorem 2.3 to construct an evolution of quasi-observables for time dependent
coefficients m = m(t) and κ = κ(t). The assumptions on the model are the
following
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1. m,κ are non-negative, continuous on R+ and bounded.

2. d(x, γ) ≥ 0 and b(x, γ) ≥ 0 are locally integrable in η ∈ Γ0, i.e.,∫
Γ
(n)
0,Λ

d(x, η) + b(x, η)dλ(η) <∞

for all n ∈ N, Λ ∈ Bc(R
d) and x ∈ Rd

3. There exists α∗ ∈ R and a1 ≥ 1 such that for all ξ ∈ Γ0 and x ∈ Rd

∑
x∈ξ

∫
Γ0

|K−1d(x, · ∪ ξ\x)|(η)eα∗|η|dλ(η) ≤ a1D(ξ)

4. There exists a2 > 0 such that for all ξ ∈ Γ0 and x ∈ Rd

∑
x∈ξ

∫
Γ0

|K−1b(x, · ∪ ξ\x)|(η)eα∗|η|dλ(η) ≤ a2D(ξ)

5. There exists a constant ν > 0 and A > 0 for which

d(x, η\x) ≤ Aeν|η|

holds for each η ∈ Γ0 and x ∈ Rd.

The bound on d implies the bound

D(η) =
∑
x∈η

d(x, η\x) ≤ A|η|eν|η| (38)

on D. Of course 5. can be replaced by d(x, η\x) ≤ P (|η|)eν|η| with P a
polynomial. The expressions for quasi-observables are given by

(L̂(t)G)(η)

= −m(t)
∑
ξ⊂η

G(ξ)
∑
x∈ξ

(K−1d(x, · ∪ ξ\x))(η\ξ)

+κ(t)
∑
ξ⊂η

∫
Rd

G(ξ ∪ x)(K−1b(x, · ∪ ξ))(η\ξ)dx

= m(t)L̂0 + L̂1(t)

with L̂1(t) = L̂(t)−m(t)L̂0 and (L0G)(η) = −D(η)G(η), where

D(η) =
∑
x∈η

d(x, η\x).

As a first step we will show that L̂(t) can be realized as bounded linear operators
on L(B′α,B

′
α′).
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Lemma 3.20. L̂ defines a bounded linear operator L̂(t) ∈ L(B′α,B
′
α′) for

α′ + ν < α ≤ α∗ with

‖L̂(t)‖αα′ ≤ A
m(t)a1 + κ(t)a2e

−α′

α− α′ − ν
. (39)

Moreover R+ � t �−→ L̂(t) is continuous in the uniform operator topology.

Proof. In [8] the authors have shown that L̂1 is relatively bounded with respect
to L̂0. Similar calculations show that

‖L̂1(t)G‖α′ ≤ (m(t)a1 + κ(t)a2e
−α′ −m(t))‖L̂0G‖α′ .

Using (38) we obtain for G ∈ B′α with α′ < α

‖L̂0G‖α′ ≤
∫
Γ0

D(η)|G(η)|eα′|η|dλ(η)

≤ A

∫
Γ0

|G(η)|eα|η||η|e−(α−α′−ν)|η|dλ(η)

≤ A

α− α′ − ν
‖G‖α

for α > α′ + ν. Therefore

‖L̂(t)‖αα′ ≤ m(t)‖L̂0‖αα′ + ‖L̂1(t)‖αα′ ≤ A
m(t)a1 + κ(t)a2e

−α′

α− α′ − ν

shows L̂(t) ∈ L(B′α,B
′
α′). Continuity follows from the continuity of m, κ and

the linear dependence on the parameters.

(38) shows that it is possible to realise L̂0 and L̂(t) as an operator with
the domain

Dom(L̂)α = {G ∈ B′α : D(·)G(·) ∈ B′α}
for α ≤ α∗.

Theorem 3.21. Assume there exists α∗ < α∗ satisfying

a1m+ a2κe
−α∗ <

3

2
,

where m = sup
t≥0

m(t) and κ = sup
t≥0

κ(t). Then there exists for each α∗ ≤
α′ < α ≤ α∗; α − α′ > ν a unique evolution family ((Û(t, s))0≤s≤t on B′α′ .
Consequently for each Gs ∈ B′α the equation

∂Gt

∂t
= L̂(t)Gt, s ≤ t, Gt|t=s = Gs

has a unique B′α−valued solution Gt = Û(t, s)Gs on B′α′ .
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Proof. Last lemma implies that by [8] for each α∗ ≤ α ≤ α∗ there exists a
unique holomorphic C0−semigroup (Ŝα

t (s))s≥0 with the generator (L̂(t),Domα(L̂)).
The same arguments as in the proof of Theorem 3.15 show B′α′′ -admissiblility
for α < α′′. The proof in [8] shows that this semigroup is a contraction semi-
group on R+ which implies Kato-stability. Theorem 2.1 implies the existence
of a unique evolution family and using again the same arguments as in the
proof of Theorem 3.15 one can show that Theorem 2.3 is applicable.

Remark 3.3. The reason to consider this simple case for the time dependent
birth and death coefficients is the continuity of t �−→ L̂(t). For more gen-
eral coefficients dt and bt one needs different assumptions, especially for the
continuity.

3.6 Conclusion

Concerning correlation functions the major part is to construct an evolution
family corresponding to the operator A(t), which does not satisfy the bound

‖A(t)‖α′α ≤ M

α− α′
. Since the embeddings Bα′ ⊂ Bα are not dense for α′ < α

it is not possible to apply Theorem 2.1 or Theorem 2.3. To overcome this
problem in the time independent case it is possible to show via perturbation
techniques, that A generates a C0-semigroup S(t), cf. [6] and [5], and afterwards
consider the dual semigroup S∗(t). Since the Banach spaces we are dealing with
are not reflexive, the semigroup S∗(t) will be in general only weak∗-continuous.
As shown in [21], one can restrict S∗(t) to some invariant subspace D(S�)
and obtain again a C0-semigroup, the so-called sun-dual S�(t). To tackle
the problem in the time dependent case we would propose to realize a similar
approach for evolution families U(t, s). One difficulty is that A(t)U(t, s) =
U(t, s)A(t) does not hold in general. The major question is how to characterize
some invariant subspace D(U�) such that D(U�) ⊂ ⋂

t∈I
D(L(t)) holds.

To show existence of global solutions we use general results for evolution
families. Since they are not applicable for correlation functions further analysis
is required. Special properties of the Banach spaces Bα and of the operators
L̂(t) and LΔ(t) might be useful to prove approximation formulas in the spirit
of [13, 22] and [23]. Consequently, such formulas might allow us to show the
existence of an evolution of states. We should stress that only sub-poissonian
solutions were considered, but in many applications clustering may appear
and therefore the time evolution should also be considered in other classes of
functions. Further steps can be dealing with Vlasov-scaling and existence of so-
lutions for the corresponding equations. A next step of generalization is to deal
with randomness in this models, meaning that the coefficients z,m, a±, d and b
should be random variables. One motivation is the fact that in applications it is
not possible to precisely measure the corresponding rates, but also fluctuations
could be taken into account. For applications it is important to understand
the properties of the solutions of our equations. Like in [?] one could analyze
properties of solutions to integro-differential equations of the form (26) or even
non-linear versions. The case of periodic coefficients play a special role in the
understanding of the behavior of the solutions. Also other spaces than (25) can
be taken to show the existence of solutions, e.g. X = C([0, T ];Cb(R

d)).
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