On centralizers of elements in the Lie algebra $W_{2}(K)$

Ie. O. Makedonskiy, A. P. Petravchuk, V. V. Stepukh

Taras Shevchenko National University of Kyiv

Abstract

Let K be a field of characteristic zero and $K[x, y]$ the polynomial ring. Denote by $W_{2}(K)$ the Lie algebra of all K-derivations of $K[x, y]$. Centralizers of elements and maximal abelian subalgebras of the algebra $W_{2}(K)$ are studied. The structure of a centralizer $C_{W_{2}}(D)$ depends on the $\operatorname{ker} D$ in the field of rational functions $K(x, y)$ (the derivation D can be naturally extended on $K(x, y))$. In particular, if $\operatorname{ker} D$ in $K(x, y)$ coincides with K or does not contain nonconstant polynomials, then $C_{W_{2}}(D)$ is of finite dimension over K.

Introduction

Let \mathbb{K} be an algebraically closed field of characteristic zero and $\mathbb{K}[x, y]$ be the polynomial algebra over \mathbb{K}. The Lie algebra $W_{2}=W_{2}(\mathbb{K})$ of all \mathbb{K}-derivations of $\mathbb{K}[x, y]$ was studied by many authors (its finite dimensional subalgebras were described by S. Lie in case $\mathbb{K}=\mathbb{C}[\mathbf{2}]$, see also $[\mathbf{3}],[4])$. The structure of subalgebras of the Lie algebra $W_{2}(\mathbb{K})$ is of great interest because its elements can be considered as vector fields on \mathbb{K}^{2} with polynomial coefficients. In this paper, we give a characterization of centralizers of elements in the Lie algebra $W_{2}(\mathbb{K})$. Given a derivation $D \in W_{2}(\mathbb{K})$ one can consider its extension on the field $\mathbb{K}(x, y)$ of rational functions by the rule $D\left(\frac{f}{g}\right)=\frac{D(f) g-f D(g)}{g^{2}}$ and the subfield of constants ker D. We prove (Theorem 1) that $C_{W_{2}}(D)$ is one-dimensional or two-dimensional (over \mathbb{K}) in case $\operatorname{ker} D=\mathbb{K}$. If ker D contains a nonconstant polynomial then $C_{W_{2}}(D)$ is infinite dimensional, its structure is described. The last case when ker D contains a rational function, but not a nonconstant polynomial yields against finite dimensional centralizers but of more complicated structure. Using these results we give a characterization of maximal abelian subalgebras of $W_{2}(\mathbb{K})$ (Theorem 2).

We use standard notations, the ground field \mathbb{K} is algebraically closed of characteristic zero. A nonzero derivation D will be called reduced if from any equality $D=h D_{1}, h \in$ $\mathbb{K}[x, y], D_{1} \in W_{2}(\mathbb{K})$ it follows that $h \in \mathbb{K}^{\star}$. It is obvious that every derivation $D \in W_{2}(\mathbb{K})$ can be written in the form $D=h D_{0}$ where $h \in \mathbb{K}[x, y]$ and D_{0} is reduced. The field $\mathbb{K}(x, y)$ will be denoted by R.

[^0]Every polynomial $p \in \mathbb{K}[x, y]$ defines a derivation $D_{p} \in W_{2}(\mathbb{K})$ (it is called a Jacobi derivation) by the rule: $D_{p}(h)=\operatorname{det} J(p, h)$, where $J(p, h)$ is the Jacobi matrix of the polynomials p, h If p is irreducible we denote by δ_{p} a reduced derivation corresponding to D_{p}. Analogously every irreducible fraction $p / q \in \mathbb{K}(x, y)$ defines a Jacobi derivation $D_{p, q}=q D_{p}-p D_{q} \in W_{2}(\mathbb{K})$, a reduced derivation corresponding to the last one will be denoted by $\delta_{p, q}$.

1. On centralizers of elements in $W_{2}(\mathbb{K})$

Let D be a nonzero derivation of $\mathbb{K}[x, y]$. It is obvious that D satisfies one of the following conditions: (1) ker D in $\mathbb{K}(x, y)$ coincides with \mathbb{K}. (2) ker D in $\mathbb{K}(x, y)$ contains a nonconstant polynomial. (3) ker D in $\mathbb{K}(x, y)$ is different from \mathbb{K} and does not contain any nonconstant polynomial. We consider these cases in Lemmas 2,4 and 5.

The next statement can be directly proved.
Lemma 1. Let $\varphi(t)=u(t) / v(t) \in \mathbb{K}(t)$ be an irreducible fraction, $\operatorname{deg} u=m, \operatorname{deg} v=$ n. If the polynomials $p, q \in \mathbb{K}[x, y]$ are algebraically independent over \mathbb{K} and irreducible, then the rational function $\varphi(p / q)$ from $\mathbb{K}(x, y)$ can be written in the form $\varphi(p / q)=\bar{u} / \bar{v}$, where \bar{u}, \bar{v} are homogeneous polynomials in p, q of the same degree $\max (m, n)$. These polynomials can be chosen to be coprime.

Lemma 2. Let $D \in W_{2}(\mathbb{K})$ be a derivation such that $\operatorname{ker} D$ in $\mathbb{K}(x, y)$ is equal to \mathbb{K}. Then the centralizer $C=C_{W_{2}}(D)$ coincides with $\mathbb{K} D$, or $C=\mathbb{K} D+\mathbb{K} D_{1}$ for a derivation D_{1} such that D, D_{1} are linearly independent over $\mathbb{K}(x, y)$.

Proof. Let first $C=C_{W_{2}}(D)$ have rank 1 over $\mathbb{K}(x, y)$. If $\operatorname{dim}_{\mathbb{K}} C=1$, then $C=\mathbb{K} D$ and all is done. Let $\operatorname{dim}_{\mathbb{K}} C>1$ and D_{1} be such an element of C that D, D_{1} are linearly independent over \mathbb{K}. Since $\mathrm{rk}_{R} C=1$, there exist polynomials $f, g \in \mathbb{K}[x, y]$ such that $f D+g D_{1}=0$ (at least one of the polynomials is nonconstant). Then there exist a reduced derivation D_{0} and polynomials $\alpha, \beta \in \mathbb{K}[x, y]$ such that $D=\alpha D_{0}, D_{1}=\beta D_{0}$. Since D, D_{1} are linearly independent over \mathbb{K}, at least one of the polynomials α, β is nonconstant, and α / β is a nonconstant rational function. Further,

$$
0=\left[D, D_{1}\right]=\left[\alpha D_{0}, \beta D_{0}\right]=\left(\alpha D_{0}(\beta)-D_{0}(\alpha) \beta\right) D
$$

and therefore $\alpha D_{0}(\beta)-D_{0}(\alpha) \beta=0$. But then $D\left(\frac{\alpha}{\beta}\right)=0$ and since $\frac{\alpha}{\beta} \notin \mathbb{K}$ we get a contradiction to our assumption on D. Therefore $\operatorname{dim}_{\mathbb{K}} C=1$ and $C=C_{W_{2}}(D)=\mathbb{K} D$.

Let now C be of rank 2 over $R=\mathbb{K}(x, y)$. Then there exists an element $D_{1} \in C$ such that D_{1}, D are linearly independent over $\mathbb{K}(x, y)$. Let D_{2} be an arbitrary element of C , write $D_{2}=u D+v D_{1}$ for some $u, v \in \mathbb{K}(x, y)$. We have

$$
\left[D, D_{2}\right]=D(u) D+D(v) D_{1}=0
$$

and taking into account the linear independence of D, D_{1} over $\mathbb{K}(x, y)$ we get $D(u)=0$ and $D(v)=0$. Since ker $D=\mathbb{K}(\operatorname{in} \mathbb{K}(x, y))$ we see that $u, v \in \mathbb{K}$ and $D_{2} \in \mathbb{K} D+\mathbb{K} D_{1}$ i.e $C \subseteq \mathbb{K} D+\mathbb{K} D_{1}$. As it holds obviously $\mathbb{K} D+\mathbb{K} D_{1} \subseteq C$ we obtain $C=\mathbb{K} D+\mathbb{K} D_{1}$.

Lemma 3. ([1]) Let $D \in W_{2}(\mathbb{K})$ be a derivation such that $\operatorname{ker} D$ in $\mathbb{K}(x, y)$ contains a nonconstant polynomial. Then $D=h \delta_{p}$, where $h \in \mathbb{K}[x, y], \delta_{p}$ is a reduced derivation corresponding to the Jacobi derivation D_{p} for an irreducible polynomial $p=p(x, y) \in$ $\mathbb{K}[x, y]$.

Definition 1. (see also [1]). (1) Let $p=p(x, y) \in \mathbb{K}[x, y]$ be an irreducible polynomial. A polynomial $f=f(x, y)$ will be called p-free if f is not divisible by any polynomial in p of positive degree. Every polynomial $g \in \mathbb{K}[x, y]$ can be written in the form $g=g_{0} g_{1}$, where g_{0} is a p-free polynomial and $g_{1}=g_{1}(p)$ is a polynomial of p (may be $g_{1}=$ const). The degree of the polynomial $g_{1}(p)$ in p will be called the p-degree of g and denoted by $\operatorname{deg}_{p} g$.
(2) Let p and q be algebraically independent irreducible polynomials from the ring $\mathbb{K}[x, y]$. A polynomial $f(x, y) \in \mathbb{K}[x, y]$ will be called $p-q$-free if f is not divisible by any homogeneous polynomial in p and q of positive degree. As earlier one can write every polynomial $g \in \mathbb{K}[x, y]$ in the form $g_{0} g_{1}$, where g_{0} is a $p-q$-free polynomial and $g_{1}=h(p, q)$ for some homogeneous polynomial $h(s, t) \in \mathbb{K}[s, t]$. The (total) degree of h in s, t will be called the $p-q$-degree of g and denoted by $\operatorname{deg}_{p-q} g$.

Lemma 4. Let $D \in W_{2}(\mathbb{K})$ be a derivation such that $\operatorname{ker} D$ in $\mathbb{K}(x, y)$ contains a nonconstant polynomial. Then $D=h f(p) \delta_{p}$ where p is an irreducible polynomial from ker D, h is a p-free polynomial and δ_{p} is a reduced derivation corresponding to the Jacobi derivation D_{p}. The centralizer $C_{W_{2}}(D)$ is one of the following algebras:
(1) $C_{W_{2}}(D)=\mathbb{K}[p] h \delta_{p}$
(2) $C_{W_{2}}(D)=\mathbb{K}[p] h \delta_{p}+\mathbb{K}[p] D_{1}$
for some $D_{1} \in C_{W_{2}}(D)$ such that D_{1}, D are linearly independent over $\mathbb{K}(x, y)$.
Proof. Using Lemma 3 we can write the derivation D in the form $D=g \delta_{p}$, where δ_{p} is a reduced derivation corresponding to D_{p}. We write the polynomial $g=g(x, y)$ in the form $g=h f(p)$, where $f(p)$ is a polynomial of p (may be $f(p)=$ const) and $h=h(x, y)$ is a p-free polynomial. Let first $\operatorname{rk}_{R} C=1$. Then any derivation $D_{1} \in C_{W_{2}}(D)$ is of the form $D_{1}=g_{1} \delta_{p}$, for some polynomial $g_{1} \in \mathbb{K}[x, y]$. It follows from the equality

$$
0=\left[D, D_{1}\right]=\left[h f(p) \delta_{p}, g_{1} \delta_{p}\right]=\left(f(p) \delta_{p}(h) g-h f(p) \delta_{p}\left(g_{1}\right)\right) \delta_{p}
$$

that $\delta_{p}(h) g_{1}-h \delta_{p}\left(g_{1}\right)=0$ and therefore $\delta_{p}\left(g_{1} / h\right)=0$. But then $g_{1} / h=\varphi(p)$ for some rational function $\varphi(t) \in \mathbb{K}(t)$ (since $\operatorname{ker} \delta_{p}=\mathbb{K}(p)$ in $\mathbb{K}(x, y)$). Thus $g_{1} / h=u(p) / v(p)$ for some polynomials $u(t), v(t) \in \mathbb{K}[t]$ (these polynomials can be chosen coprime). From
the last equality we get $g_{1} v(p)=h u(p)$. If the polynomial $v(t)$ is nonconstant, then taking into account the condition $\mathbb{K}=\overline{\mathbb{K}}$ we see that every divisor of $v(p)$ of the form $p-\lambda_{i}, \lambda_{i} \in \mathbb{K}$ divides the polynomial h. But the latter is impossible because of choice of h and therefore $v(p)=$ const. Denote $u_{1}(t)=u(t) / v \in \mathbb{K}[t]$. We get $g_{1}=h u_{1}(p)$ and $D_{1}=g_{1} \delta_{p}=h u_{1}(p) \delta_{p} \in \mathbb{K}[p] h \delta_{p}$. Since the element D_{1} was chosen arbitrarily we obtain $C_{W_{2}}(D) \subseteq \mathbb{K}[p] h \delta_{p}$. It is obvious that $\mathbb{K}[p] h \delta_{p} \subseteq C_{W_{2}}(D)$ and therefore $C_{W_{2}}(D)=\mathbb{K}[p] h \delta_{p}$. The centralizer $C_{W_{2}}(D)$ is of type 1 .

Let now $C_{W_{2}}(D)$ be of rank 2 over $R=\mathbb{K}(x, y)$. Note that for any derivation $D_{1} \in$ $C_{W_{2}}(D)$ satisfying the condition $D D_{1}=D_{1} D$ it follows that $D_{1}(p) \in \operatorname{ker} D$. Since ker $D=\mathbb{K}[p]$ (in $\mathbb{K}(x, y))$, then $D_{1}(p)=f_{1}(p)$ for some polynomial $f_{1}(t) \in \mathbb{K}[t]$. Take an element $D_{1} \in C_{W_{2}}(D)$ such that the polynomial $f_{1}(t)$ has the possible lowest degree. Take now any derivation $D_{2} \in C_{W_{2}}(D)$ and let $D_{2}(p)=f_{2}(p)$. Let us show that the polynomial $f_{2}(t)$ is divisible by $f_{1}(t)$. Really, let this is not the case and for some $f_{2}(t) \in \mathbb{K}[t]$ the greatest common divisor $g c d\left(f_{2}, f_{1}\right)=g(t)$ be of degree less than $\min \left(\operatorname{deg} f_{1}, \operatorname{deg} f_{2}\right)$. Then there exist polynomials $a(t), b(t) \in \mathbb{K}[t]$ such that $g(t)=a(t) f_{1}(t)+b(t) f_{2}(t)$. The derivation $D_{3}=a(p) D_{1}+b(p) D_{2}$ satisfies obviously the condition $\left[D, D_{3}\right]=0$ and $D_{3}(p)=g(p)$. The latter contradicts to the choice of the derivation D_{1}. Therefore $f_{2}(t)$ is divisible by $f_{1}(t)$. Set $\mu(t)=f_{2}(t) / f_{1}(t)$. It is easy to see that

$$
\left(D_{2}-\mu(p) D_{1}\right)(p)=D_{2}(p)-\mu(p) D_{1}(p)=f_{2}(p)-\mu(p) f_{1}(p)=0
$$

The latter means in view of Lemma 1 that $D_{2}-\mu(p) D_{1}=g \delta_{p}$ for some polynomial $g \in \mathbb{K}[x, y]$. Since $D_{2}-\mu(p) D_{1} \in C$, it follows from above proven that $g=u(p) h$ for some $u(p) \in \mathbb{K}[p]$. Thus, $D_{2} \in \mathbb{K}[p] D_{1}+\mathbb{K}[p] h \delta_{p}$. The inverse inclusion holds obviously and therefore $C_{W_{2}}(D)=\mathbb{K}[p] D_{1}+\mathbb{K}[p] h \delta_{p}$.

Lemma 5. Let $D \in W_{2}(\mathbb{K})$ be such a derivation that $\operatorname{ker} D \neq \mathbb{K}$ in $\mathbb{K}(x, y)$ and $\operatorname{ker} D$ does not contain any nonconstant polynomial. Then $D=h f(p, q) \delta_{p, q}$, where p, q are algebraically independent over \mathbb{K} irreducible polynomials such that $\operatorname{ker} D=\mathbb{K}\left(\frac{p}{q}\right), f(p, q)$ is a homogeneous polynomial in p and q of degree $m \geq 0$, the polynomial h is $p-q$-free and $\delta_{p, q}$ is a reduced derivation corresponding to $q D_{p}-p D_{q}$. The centralizer $C=C_{W_{2}}(D)$ is one of the following algebras:
(1) $C=\mathbb{K}[p, q]_{m} h \delta_{p, q}$, where $\mathbb{K}[p, q]_{m}$ is the space of all homogeneous polynomials in p, q of degree $m=\operatorname{deg}_{p-q} f$, in particular $\operatorname{dim}_{\mathbb{K}} C=m+1$.
(2) $C=\left(\mathbb{K}\left(\frac{p}{q}\right) D+\mathbb{K}\left(\frac{p}{q}\right) D_{1}\right) \cap W_{2}(\mathbb{K})$, where $D_{1} \in C$, such that D, D_{1} are linearly independent over $\mathbb{K}(x, y)$. The subalgebra C is finite dimensional over \mathbb{K}, and if $D=P \frac{\partial}{\partial x}+Q \frac{\partial}{\partial y}, \quad D_{1}=P_{1} \frac{\partial}{\partial x}+Q_{1} \frac{\partial}{\partial y}, \quad \Delta=P Q_{1}-P_{1} Q$, and $\operatorname{deg}_{p-q} \Delta=s$, then $\operatorname{dim}_{\mathbb{K}} C \leq m+s+2$, where $m=\operatorname{deg}_{p-q} f$.

Proof. Since ker $D \neq \mathbb{K}$, the subfield ker D contains a nonconstant rational function. Note that ker D in $\mathbb{K}(x, y)$ is algebraically closed in $\mathbb{K}(x, y)$, so $\operatorname{tr} . \operatorname{deg}_{\mathbb{K}} \operatorname{ker} D=1$. The Gordan's Theorem (see [6], Th. 3) yields now that $\operatorname{ker} D=\mathbb{K}\left(\frac{p}{q}\right)$ for a nonconstant rational function p / q. The polynomials p and q can be chosen to be irreducible (see, for example [5]). It can be easily shown that $D=h f(p, q) \delta_{p, q}$ where $\delta_{p, q}$ is a reduced derivation correspond to $q D_{p}-p D_{q}, h$ is p - q-free and $f(p, q)$ is a homogeneous polynomial in p, q. Set $m=\operatorname{deg}_{p-q} f$.

Let first $C=C_{W_{2}}(D)$ be of rank 1 over $\mathbb{K}(x, y)$. Take any element $D_{1} \in C$. Then $D_{1}=d_{1} \delta_{p, q}$ for some polynomial d_{1}, the polynomial d_{1} can be written in the form $d_{1}=$ $f_{1} h_{1}$, where $f_{1}=f_{1}(p, q)$ is a homogeneous polynomial in p, q and h_{1} is $p-q$-free. The derivations D and D_{1} satisfy the condition

$$
\left[D, D_{1}\right]=\left[h f(p, q) \delta_{p, q}, h_{1} f_{1} \delta_{p, q}\right]=0
$$

But then $\delta_{p, q}(h f) h_{1} f_{1}-h f \delta_{p, q}\left(h_{1} f_{1}\right)=0$ and therefore $\delta_{p, q}\left(h f / h_{1} f_{1}\right)=0$. The latter means that $\frac{h f}{h_{1} f_{1}} \in \operatorname{ker} D=\mathbb{K}\left(\frac{p}{q}\right)$ and $h f / h_{1} f_{1}=u(p, q) / v(p, q)$ for some homogeneous (in $p, q)$ polynomials u, v of the same degree (see Lemma 1). We can choose these polynomials to be coprime as polynomials in p, q. But then they are coprime as polynomials in x, y because $p-\lambda_{i} q$ and $p-\lambda_{j} q$ are coprime provided that $\lambda_{i} \neq \lambda_{j}$.

It follows from these considerations that $h f v=h_{1} f_{1} u$ with homogeneous polynomials $f v, f_{1} u$ in p, q and p - q-free polynomials h, h_{1}. Since the decomposition into product of a p - q-free polynomial and a homogeneous in p, q polynomial is unique up to nonzero scalar multiple it follows that $h_{1}=h c$ for some $c \in \mathbb{K}^{\star}$. As $\operatorname{deg}_{p-q} u=\operatorname{deg}_{p-q} v$ by the choice of these polynomials we see that $\operatorname{deg}_{p-q} f_{1}=\operatorname{deg}_{p-q} f=m$. Then $D_{1}=f_{1} h_{1} \delta_{p, q} \in$ $\mathbb{K}[p, q]_{m} h \delta_{p, q}$ where $\mathbb{K}[p, q]_{m}$ is the vector space of all homogeneous polynomials in p, q of degree m in p, q. One can easily show that $\mathbb{K}[p, q]_{m} h \delta_{p, q} \subseteq C$ and therefore $C=$ $\mathbb{K}[p, q]_{m} h \delta_{p, q}$. The centralizer is of type 1 of Lemma.

Let now the rank $C_{W_{2}}(D)$ be equal to 2 (over $\left.\mathbb{K}(x, y)\right)$. Write $D=P \frac{\partial}{\partial x}+Q \frac{\partial}{\partial y}, \quad D_{1}=$ $P_{1} \frac{\partial}{\partial x}+Q_{1} \frac{\partial}{\partial y}$ with $P, Q, P_{1}, Q_{1} \in \mathbb{K}[x, y]$ and let $\Delta_{1}=P Q_{1}-P_{1} Q$. Further, take an another element $D_{2} \in C$ such that D, D_{2} are also linearly independent over $\mathbb{K}(x, y)$. Then $D_{2}=$ $\alpha D+\beta D_{1}$ for some $\alpha, \beta \in \mathbb{K}(x, y)$. It follows from the relations $0=\left[D, D_{2}\right]=[D, \alpha D+$ $\left.\beta D_{1}\right]=D(\alpha) D+D(\beta) D_{1}$ that $D(\alpha)=D(\beta)=0$ (because of linearly independence of $\left.D, D_{1}\right)$. But then $\alpha, \beta \in \mathbb{K}\left(\frac{p}{q}\right)$ (recall that $\operatorname{ker} D$ in $\mathbb{K}(x, y)$ coincides with $\left.\mathbb{K}\left(\frac{p}{q}\right)\right)$ and therefore $C \subseteq\left(\mathbb{K}\left(\frac{p}{q}\right) D+K\left(\frac{p}{q}\right) D_{1}\right) \cap W_{2}(\mathbb{K})$. The inverse to this inclusion also holds, so we have $C=\left(\mathbb{K}\left(\frac{p}{q}\right) D+K\left(\frac{p}{q}\right) D_{1}\right) \cap W_{2}(\mathbb{K})$.

Write now the derivation D_{2} in the form $D_{2}=P_{2} \frac{\partial}{\partial x}+Q_{2} \frac{\partial}{\partial y}$ with $P_{2}, Q_{2} \in \mathbb{K}[x, y]$ and denote $\Delta_{2}=P Q_{2}-P_{2} Q$. Since $P_{2}=\alpha P+\beta P_{1}$ and $Q_{2}=\alpha Q+\beta Q_{1}$, we have $\Delta_{2}=\beta \Delta_{1}$. The rational function $\beta \in \mathbb{K}(p / q)$ can be written in the form $\beta=u / v$, where u, v are homogeneous polynomials in p, q and $\operatorname{deg}_{p-q} u=\operatorname{deg}_{p-q} v$ (see Lemma 1). Then we
obtain from the equality $\Delta_{2}=\beta \Delta_{1}$ and condition $\Delta_{1}, \Delta_{2} \in \mathbb{K}[x, y]$ that the polynomials Δ_{1} and Δ_{2} have the same $p-q$-degree. Besides, these polynomials have the same $p-q$-free part up to nonzero scalar multipliers. Let $\operatorname{deg}_{p-q} \Delta_{1}=s$. Note that the vector space $\mathbb{K}[p, q]_{s}$ of all homogeneous polynomials of degree s in p, q has dimension $s+1$ over \mathbb{K}. The centralizer $C=C_{W_{2}}(D)$ has a \mathbb{K}-subspace C_{0} consisting of all derivations linearly dependent with D. By the above proven the subspace C_{0} is of dimension m over \mathbb{K} where m is the p - q-degree of the polynomial f from the decomposition $D=h f \delta_{p, q}$. Take arbitrary derivations T_{1}, \ldots, T_{s+2} from C, write down $T_{i}=P_{i} \frac{\partial}{\partial x}+Q_{i} \frac{\partial}{\partial y}, i=1, \ldots, s+2$, and denote $\Delta_{i}=P Q_{i}-P_{i} Q$. Since the determinantes Δ_{i} have the same p - q-free part (up to nonzero scalar multipliers) and $\operatorname{dim}_{\mathbb{K}} \mathbb{K}[p, q]_{s}=s+1$, there exist elements $c_{1}, \ldots, c_{s+2} \in \mathbb{K}$ such that $c_{1} \Delta_{1}+\cdots+c_{s+2} \Delta_{s+2}=0$ and at least one of c_{i} is nonzero. Consider the derivation $T=c_{1} T_{1}+\cdots+c_{s+2} T_{s+2}=U \frac{\partial}{\partial x}+V \frac{\partial}{\partial y}, U, V \in \mathbb{K}[x, y]$ from the centralizer C. It is obvious that $P V-Q U=0$ and this equality implies that D and T are linearly dependent over $\mathbb{K}(x, y)$, i.e. $T \in C_{0}$. Therefore $\operatorname{dim} C / C_{0} \leq s+1$. But then the dimension of C over \mathbb{K} does not exceed $(m+1)+(s+1)=m+s+2$.

Theorem 1. Let D be an arbitrary nonzero element of $W_{2}(\mathbb{K})$. Then the centralizer $C=C_{W_{2}}(D)$ is a subalgebra of one of the following types:
(1) $C=\mathbb{K} D$, if $\operatorname{ker} D$ in $\mathbb{K}(x, y)$ coincides with \mathbb{K}.
(2) $C=\mathbb{K} D+\mathbb{K} D_{1}$, if $\operatorname{ker} D$ in $\mathbb{K}(x, y)$ coincides with \mathbb{K} and there exists D_{1} such that $\left[D, D_{1}\right]=0$ and D, D_{1} are linearly independent over $\mathbb{K}(x, y)$.
(3) $C=\mathbb{K}[p] h \delta_{p}$, if $\operatorname{ker} D$ in $\mathbb{K}(x, y)$ contains a nonconstant polynomial, this polynomial p can be chosen irreducible, $D=h f \delta_{p}$, where f is a polynomial in p, h is p-free and δ_{p} is a reduced derivation corresponding to D_{p}.
(4) $C=\mathbb{K}[p, q]_{m} h \delta_{p, q}$, if $\operatorname{ker} D$ contains a nonconstant rational function p / q and does not contain any nonconstant polynomial, $\operatorname{ker} D=\mathbb{K}\left(\frac{p}{q}\right), D=h f \delta_{p, q}$, where f is a homogeneous polynomial in , q of degree m, h is a $p-q$-free polynomial and $\delta_{p, q}$ is a reduced derivation corresponding to $q D_{p}-p D_{q}$.
(5) $C=\left(\mathbb{K}\left(\frac{p}{q}\right) D+\mathbb{K}\left(\frac{p}{q}\right) D_{1}\right) \cap W_{2}(\mathbb{K})$, where D satisfies all the conditions of the previous part of Theorem, D and D_{1} are linearly independent over $\mathbb{K}(x, y)$ $\left[D_{1}, D\right]=0$. If $D=P \frac{\partial}{\partial x}+Q \frac{\partial}{\partial y}, \quad D_{1}=P_{1} \frac{\partial}{\partial x}+Q_{1} \frac{\partial}{\partial y}$, and $\quad \Delta=P Q_{1}-P_{1} Q$ then $\operatorname{dim}_{\mathbb{K}} C \leq m+s+2$, where m as in part 4 of Theorem and $s=\operatorname{deg}_{p-q} \Delta$.

Proof. See Lemmas 2, 4 and 5.
Corollary 1. If $D \in W_{2}(\mathbb{K})$ and $C_{W_{2}}(D)$ is infinite dimensional over \mathbb{K}, then $\operatorname{ker} D$ contains a nonconstant polynomial which can be chosen to be irreducible.

Theorem 2. Let L be a maximal abelian subalgebra of the Lie algebra $W_{2}(\mathbb{K})$. Then L is one of the following algebras:
(1) One-dimensional of the form $\mathbb{K} D$ where $D \in W_{2}(\mathbb{K}$ and $\operatorname{ker} D$ in $\mathbb{K}(x, y)$ coincides with \mathbb{K}.
(2) Two-dimensional of the form $\mathbb{K} D+\mathbb{K} D_{1}$ where D, D_{1} are linearly independent over $\mathbb{K}(x, y)$.
(3) Finite dimensional of the form $\mathbb{K}[p, q]_{m} h \delta_{p, q}$, where $h \in \mathbb{K}[x, y], \mathbb{K}[p, q]_{m}$ is the vector space of all homogeneous in p, q polynomials of degree m (see Theorem 1).
(4) Infinite dimensional of the form $\mathbb{K}[p] h \delta_{p}$, where $h \in \mathbb{K}[x, y], \mathbb{K}[p]$ is the vector space of polynomials in p (see Theorem 1).

Proof. Let L be a maximal abelian subalgebra of $W_{2}(\mathbb{K})$. If $\mathrm{rk}_{\mathbb{K}(x, y)} L=2$ then L contains elements D_{1}, D_{2} which form a basis of $W_{2}(\mathbb{K})$ over $\mathbb{K}(x, y)$ (as a vector space). But then every element D of L can be written in the form $D=\alpha_{1} D_{1}+\alpha_{2} D_{2}$ for some $\alpha_{1}, \alpha_{2} \in \mathbb{K}(x, y)$. Since $\left[D, D_{1}\right]=\left[D, D_{2}\right]=0$ we have that $D_{1}\left(\alpha_{i}\right)=0, \quad D_{2}\left(\alpha_{i}\right)=0, i=$ 1,2 . The latter means that $\alpha_{1}, \alpha_{2} \in \mathbb{K}$ and therefore $L=\mathbb{K} D_{1}+\mathbb{K} D_{2}$. The Lie algebra L is of type 2 of this Theorem.

Let now $\operatorname{rk}_{\mathbb{K}(x, y)} L=1$. Take any nonzero element $D \in L$. If $\operatorname{dim}_{\mathbb{K}} L=\infty$, then $L \subseteq C_{W_{2}}(D)$ and $C_{W_{2}}(D)=\mathbb{K}[p] h \delta_{p}$ by Theorem 1. Since $C_{W_{2}}(D)$ is abelian we see that $L=C_{W_{2}}(D)$ and L is of type 4 . If $\operatorname{dim}_{\mathbb{K}} L<\infty$ then one can analogously show that L is of type 1 or 3 .

References

[1] Iena O. G., Petravchuk A. P., Regeta A. O. On annihilators of rational functions in the Lie algebra of derivations of $k[x, y]$, submitted (see arXiv:math.RA:0910.4465).
[2] Lie S. Theorie der Transformationsgruppen. Vol. 3, Leipzig, 1893.
[3] Gonzlez-Lopez A., Kamran N., Olver P. J. Lie algebras of differential operators in two complex variavles // Amer. J. Math. - 1992. - 114. - P. 1163-1185.
[4] Petravchuk A. P., Iena O. G. On centralizers of elements in the Lie algebra of the special Cremona group $s a(2, k) / /$ Journal of Lie Theory. - 2006. - 16, no. 3. - P. 561-567.
[5] Petravchuk A. P., Iena O. G. On closed rational functions in several variables // Algebra and Discrete Mathematics. - 2007. - no. 2. - P. 115-124.
[6] Schinzel A. Polynomials with Special Regard to Reducibility. Cambridge Univ. Press, 2000.

[^0]: E-mail: apetrav@gmail.com
 (c) Ie. O. Makedonskiy, A. P. Petravchuk, V. V. Stepukh, 2013

