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1 Introduction

When it comes to analyze a financial time series, volatility modelling
plays an important role. As an example, the variance of financial returns often
displays a dependence on the second order moments and heavy-peaked and
tailed distributions. In order to take into account for this phenomenon, known
at least from the work of [22] and [14], econometric models of changing volatility
have been introduced, such as the Autoregressive Conditional Heteroskedasticity
(ARCH) model by Engle, see [13]. The idea behind the ARCH model is to make
volatility dependent on the variability of past observations. Taylor, in [26],
studied an alternative formulation in which volatility was driven by unobserved
components, and has come to be known as the Stochastic Volatility (SV) model.
Both the ARCH and the SV models, covered in Section 2, have been intensively
studied in the past decades, together with more or less sophisticated estimation
approaches, see [25], as well as concerning concrete applications, see, e.g., [9],
and references therein.

Parallel to the study of discrete-time econometric models for financial time
series, more precisely in the early 1970’s, the world of option pricing experienced
a great contribution given by the work of Fischer Black and Myron Scholes.
The Black-Scholes (BS) model, see [4], assumes that the price of the underlying
asset of an option contract follows a geometric Brownian motion. Latter type
of approach has been also used within the framework of interest rate dynamics,
see, e.g., [6], and references therein. One of the most successful extensions has
been the continuous-time Stochastic Volatility (SV) model, introduced with the
work of Hull and White, see, [19]. A major contribution was successively due
to Heston in [18], indeed he developed a model which led to a quasi-closed
form expression for European option prices. Differently from the BS model,
the volatility is not longer considered constant, but it is allowed to vary trough
time in a stochastic way. In Section 3 we will start from a sub-class of SV
models, which is the one of Local Volatility (LV), being characterized by a
deterministic time-varying volatility, and then we will consider the general SV
case, providing information about the pricing equation as made, e.g., in [5] or,
from a point of view more centred towards applications, in [12], and references
therein.
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2 Discrete-time models

Discrete-time models for the volatility, as said in the introduction, are
born in order to analyze and reproduce the behavior of real financial time
series, which are often characterized by a number of stylized facts, i.e., features
of particular interest.

• The variance of returns of financial products is often subject to the so
called volatility clustering effect. This means that the returns show an
high serial autocorrelation: periods of high volatility are followed by
periods with the same feature and viceversa.

• As noted in the pioneer works by Mandelbrot, see [22], and Fama, see
[14], the variance of financial returns often displays a dependence on the
second order moments and heavy-peaked and tailed distributions.

• Stock returns often exhibit the so called leverage effect: the conditional
variance responds in an asymmetric way with respect to rises or falls of
the asset price.

• The covariation effect captures the fact that the volatilities of different
financial assets could be correlated: large changes in the returns of an
asset can induce a similar behavior in other assets.

In the following we will briefly introduce the ARCH model, see [13], trying
to emphasize its limits. Then, we will treat the SV model, see [26], and related
extensions, in order to model the aforementioned stylized facts. It is worth
to mention that different, more numerically oriented methods, can be also
fruitfully exploited, as, e.g., suggested in [10, 11] and references therein.

2.1 ARCH model

One of the most popular discrete-time models for the stochastic volatility
is the ARCH model, which establishes a connection between the past squared
returns of a financial asset and its current conditional variance. We let {yt}∞t=1

be the return process of some observation model. In the original formulation
of Engle, see [13], the dynamic of the ARCH(1) was given by

yt|Ft−1 ∼ N(μ, σ2
t ), (1)

σ2
t = w + αy2t−1, (2)

where w,α ≥ 0 are real non-stochastic parameters, Ft denotes the global in-
formation up to time t. Naturally, eq. (2) could be generalized to the general
ARCH(p) case

σ2
t = w +

p∑
i=1

αiy
2
i−1, αi ≥ 0,

in which the conditional variance is given by a linear combination of p-lagged
squared error terms. As noted by Nelson, see [23], the ARCH model presents
at least 2 drawbacks:

• Constraints must be imposed on the parameters in order to guaran-
tee the positivity of the conditional variance, however they are often
violated in the classical estimation procedures.
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• It is not possible to model the conditional variance as a random oscil-
latory process, which is a recurrent situation observed in real data.

In the following we will present the Stochastic Volatility (SV) model due to
Taylor, see [26] and [27], and able to overcome the aforementioned difficulties.

2.2 Stochastic volatility (SV) model

The peculiarity of the SV model by Taylor is that the variance of the
returns is modeled as an unobserved process. In [27] Taylor shows that this
model can be transposed into a continuous time version, useful when it comes
to price options and other modern financial instruments.

Denoting again {yt}∞t=1 as the return process of some observation model,
the SV parametrization sets®

yt = exp(ht/2)εt, εt ∼ N(0, 1),

ht = w + αht−1 + ηt, ηt ∼ N(0, σ2
η),

(3)

where the εt’s and the ηt’s are independent. Notice that {ht}∞t=1 represents
nothing but the logarithm of the volatility of the return process {yt}∞t=1. In
this way, the positivity of the related variance is guaranteed. α can be seen
as a persistence parameter. Notice that {ht}∞t=1 is a standard autoregressive
AR(1) process only when |α| < 1, case in which it is strictly stationary with
mean an variance

μh = E[ht] =
w

1− α
, σ2

h = Var(ht) =
σ2
η

1− α2
.

Equation (3) is not the unique way to write the dynamic of the model, see [24]
for equivalent formulations. In particular, the SV model can be extended in
order to take into account the following stylized facts, see [21] for further details:

• In some cases, the kurtosis of a financial time series is greater than 3.
This corresponds to fatter tails with respect to a normal distribution.
The problem can be solved by allowing εt in equation (3) to have a
Student t-distribution.

• A financial asset can exhibit the so called leverage effect, that is, the
volatility responds in an asymmetric way to rises or falls in the returns.
This fact can be incorporated in the SV model by introducing a negative
instantaneous correlation between εt and ηt in equation (3).

2.2.1 Estimation procedures

Differently from the ARCH-type models, we do not know the conditional
distribution of yt in closed form, see equation (1). For this reason, the stan-
dard Maximum Likelihood (ML) approach is hard to implement. Indeed, if we
denote by y = (y1, . . . , yN ) the vector of N consecutive observations of the pro-
cess yt, by h = (h1, . . . , hN ) the corresponding vector for the log-volatilities,
and by θ = (w,α, σ2

η) the vector of parameters, then the likelihood can be
written as

L(y; θ) =
∫

p(y,h|θ) dh =

∫
p(y|h, θ)p(h|θ) dh, (4)
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where we integrate with respect to the joint probability distribution of the
data. The N -dimensional integral in equation (4) requires the use of computa-
tionally involved numerical methods and for this reason the estimation of the
parameters is hard. Following [24], we briefly cite some alternative estimation
procedures:

• Generalized Method of Moments (GMM): this method was introduced
by Taylor, see [26]. The basic idea is to match the empirical moments
of the observed vector y with the corresponding theoretical ones, which
can be computed explicitly, hence the key advantage is that the con-
ditional distribution of yt is not required. More precisely, we need to
minimize the objective function Q = g′Wg with respect to the vector
of parameters θ, where

g =
1

N

(
N∑
i=1

y2i − E[y2i ],
N∑
i=1

y4i − E[y4i ],
N∑
i=2

y2i y
2
i−1 − E[y2i y

2
i−1],

. . . ,
N∑

i=τ+1

y2i y
2
i−τ − E[y2i y

2
i−τ ]

)�
, τ ≥ 1,

and W is a positive definite, symmetric weighting matrix of dimension
(τ +2)× (τ +2). It is possible to minimize Q using standard numerical
routines.

• Quasi-Maximum Likelihood estimation (QML): this approach is based
on the linearization of the SV model in equation (3). Assuming εt ∼
N(0, 1) and defining wt = log y2t , it is possible to prove that®

wt = −1.2704 + ht + ξt,

ht = w + αht−1 + ηt, ηt ∼ N(0, σ2
η),

(5)

where ξt = log ε2t−E[log ε2t ],Var(ξt) = π2/2. Even if the errors ξt do not
have a normal distribution, the underlying idea of the QML approach
is to suppose ξt ∼ N(0, π2/2) i.i.d., and to apply the Kalman filter to
equation (5) in order to produce one-step ahead forecasts of wt as well
as ht. Decomposing the prediction error, it is possible to construct the
Gaussian likelihood of the data, to be minimized in order to estimate
the vector of parameters θ, see [17].

2.2.2 The multivariate case

A stylized fact which can not be captured by the standard univariate
SV model is the so called covariation effect, that is, roughly speaking, the
presence of a correlation between the volatilities of different financial series.
Often, large changes in the returns of an asset are followed by large changes
in other ones. This can be due to the presence of common unobserved factors
influencing the dynamics of a set of assets. Volatilities are also subject to the
coming of new information, such as trading volume, quote arrivals, goverment’s
health, dividend announcements and so on. All these phenomena suggest that a
multivariate model could be better than an univariate one in term of adherence
to real data.
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The first multivariate SV model was proposed in [16]. We denote by
yt = (y1,t, . . . , yN,t)

� the vector of returns related to N different assets at time
t. The dynamic of the i-th component is assumed to be®

yi,t = exp(hi,t/2)εi,t,

hi,t = wi + αihi,t−1 + ηi,t,

where εt = (ε1,t, . . . , εN,t) and ηt = (η1,t, . . . , ηN,t) are mutually independent
and normally distributed. Moreover

Var(ηt) = Ση,

Var(εt) = Σε =

á
1 ρ1,2 . . . ρ1,N

ρ1,2 1 . . . ρ2,N
...

...
. . .

...
ρ1,N ρ2,N . . . 1

ë
,

where |ρi,j | < 1, so that Σε is a correlation matrix. The weakness of the model
is that it does not allow the covariances of the assets to evolve in an independent
manner of the variances. If i �= j,

Cov(yi,t, yj,t|ht) = E[y2i,ty
2
j,t|ht] = ρi,j exp

Å
hi,t

2

ã
exp

Å
hj,t

2

ã
,

and since

Var(yi,t|ht) = exp (hi,t) ,

it follows that the model has constant correlations, which can be a limiting fact
in some situations, see, e.g., [25]. As in the univariate case, it is possible to
estimate the parameters through a QML approach, see [16], by linearizing the
corresponding equations.

The multivariate SV model admits also other representations, e.g., the
factorial one, see [20]. The main advantage with respect to the previous mul-
tivariate model, is the reduction of the dimensionality of the parameter space:
the returns vector yt = (y1,t, . . . , yN,t)

� is a linear combination of unobser-
ved and common factors following a univariate SV dynamic. If we denote by
ft = (f1,t, . . . , fK,t)

� the set of common factors at time t, then

yt = B ft +wt ,®
fi,t = exp(hi,t/2)εi,t,

hi,t = μi + φihi,t−1 + ηi,t,
i = 1, . . . ,K,

where B is a constant matrix of dimension N × K, K < N , wt ∼ N(0,Ω)
is the error vector and it is assumed independent of all the other term. The
random variables εi,t and ηi,t are serially and mutually independent and nor-
mally distributed. We assume also that |φi| < 1 so that the factor log-volatility
processes hi,t are stationary. For more details about the model, see [20], [24].
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3 Continuous-time models

In the early 1970’s the world of option pricing experienced a great contri-
bution given by the work of Fischer Black and Myron Scholes. They developed
a new mathematical model to treat certain financial quantities publishing the
related results in the article The Pricing of Options and Corporate Liabilities,
see [4]. The latter work became soon a reference point in the financial scenario.
Nowadays, many traders still use the Black and Scholes (BS) model to price
as well as to hedge various types of contingent claims. An important property
of the BS model is that all the involved parameters are not influenced by the
risk preferences of investors. In particular, the BS approach is based on the
so-called risk-neutral pricing assumption which greatly simplifies the associated
derivatives analysis.

In particular, in the classical BS-model, the volatility parameter, let us
indicate it with σ, is assumed to be constant. Latter hypothesis cannot be
considered realistic, as simple empirical analyses can easily show. In particular
it is rather simple to show that the implied volatility of a financial asset is not
constant but varies with time to maturity T > 0, and with respect to the strike
price K. Such a fact has started to become more and more evident since the
general market crash in 1987. As a consequence, the real values of the volatility
parameter that can be observed in the market do not give rise to a flat shape
as the BS-model forecasts. In fact, if we fix the strike price value and we look
at the corresponding implied volatility section, e.g., with respect to a plain
vanilla option, the typical figure that appears justifies the definition of the so-
called smile/smirk effect. The latter because, especially for short maturities,
the implied volatility sections assume a shape which resembles a smile or a
smirk.

As a consequence of the BS-model lack of description accuracy, new mo-
dels have been developed to overcome issues of the type mentioned so far. This
has been also produced approaches able to treat the increasingly complexity
characterizing modern financial instruments. Between such alternatives to the
BS analysis, we focus our attention on the so called local volatility (LV) and
stochastic volatility (SV) models.

3.1 Local volatility models

The LV models can be seen as the simplest extension of the classical BS
case, in order to achieve an exact reproduction of the volatility smile, through
calibration to market data. The main difference is that in LV models, the
instantaneous volatility is, in general, a function of the current time and the
current asset price. If we denote by St the price of the asset at time t, we can
write the related SDE as

dSt = μ(t, St)St dt+ σ(t, St)St dWt ,

where S0 > 0, μ(t, St) is the instantneous drift, σ(t, St) is the instantaneous
volatility at time t, and Wt a Brownian motion. If σ(t, St) ≡ σ > 0 then we
turn back to the BS case.
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The first LV model appeared in the literature is the so called Constant
Elasticity of Variance (CEV) model, see [7]. The latter is characterized by a
volatility defined as

σ(t, St)
.
= σSγ−1

t , σ > 0,

where γ must be determined with a calibration to market data. With γ = 1
we find the BS model, while γ = 0 leads to normally distributed returns.

3.1.1 The pricing equation

Denoting by C = C(t, St;T,K) the time-t price of a vanilla option having
as underlying the asset price St, maturity T and strikeK > 0, then it is possible
to show, assuming existence and uniqueness of the risk-neutral measure, that
C solves the following PDE:

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ(t, S)2S2 ∂

2C

∂S2
= rC , (6)

where r > 0 is the constant instantaneous spot rate, to be coupled with appro-
priate boundary conditions, depending on the nature of the option of interest.
In particular, setting C(T, ST ) to the option’s payoff and solving the equation
backwards from T to t, it is possible to find C(t, St).

3.1.2 The Dupire formula

Suppose to have a set of vanilla option’s prices related to time t. Is there
a way to set σ(t, S) in such a way to perfectly fit these prices? The answer is
yes, and comes from the well known Dupire formula, see [3], [15], or [8]:

σ(T,K)2
.
= σ(T,K; t, St)

2 = 2

dC

dT
+ rK

dC

dK

K2
d2C

dK2

. (7)

In particular, if equation (7) holds at time t = 0, then the model is automati-
cally calibrated to the initial market volatility smile. Moreover, it is possible
to show that the right hand side of equation (7) is always well defined if the
real market is arbitrage free. Manipulating a little bit the Dupire formula, we
can rewrite it in the following way:

∂C

∂T
+ rK

∂C

∂K
− 1

2
σ(T,K)2K2 ∂

2K

∂K2
= 0 . (8)

Equation (8) is similar to (6) in many aspects, however must be solved forward
in order to find option’s prices for all the values of K and T , fixing t and St.

Suppose, for simplicity of exposition, that r = 0. Then the Dupire formula
(7) turns into

σ(T,K)2 = 2

∂C

∂T

K2
∂2C

∂K2

. (9)
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Usually, vanilla option prices are quoted in terms of the BS implied volatility
σBS = σBS(t, St;T,K), i.e., that value of the volatility which, once inserted
into the BS pricing formula, gives the market price:

C(t, St;K,T ) = CBS(t, St;K,T, σBS).

By using the chain differentiation rules and the formulas of the BS greeks, it is
possible to write equation in terms of σBS , instead if C, see [15], i.e.,

σ(τ,K)2 =
2
∂σBS

∂τ
+

σBS

τ

K2

Ç
∂2σBS

∂K2
− d1

√
τ

Å
∂σBS

∂K

ã2
+

1

σBS

Å
1

K
√
τ
+ d1

∂σBS

∂K

ã2å ,

where τ
.
= T − t and

d1
.
=

1

σBS
√
τ
ln

Å
St

K

ã
+

1

2
σBS

√
τ .

As a particular case, suppose that σBS is independent of K, i.e., the volatility
smile has no skew, so σ(τ,K) = σ(τ), where

σ(τ)2 = 2τσBS
∂σBS

∂τ
+ σ2

BS =
∂

∂τ

(
τσ2

BS

)
,

from which ∫ τ

0

σ(u)2du = τσ2
BS .

3.2 Stochastic volatility models

The SV models represent a natural extension of the LV models. We will
consider the following couple of SDEs:®

dSt = μ(t, St)St dt+
√
vtSt dWt

dvt = α(t, St, vt) dt+ ηβ(t, St, vt)
√
vt dZt ,

E[dWtdZt] = ρ dt , (10)

where η is the volatility of volatility, ρ represents the instantaneous correlation
between the two Brownian motions Wt and Zt, and γ > 0. In the limit η → 0,
we retrieve the SV case.

The Heston model is, nowadays, the most know SV model; it was intro-
duced for the first time in [18]. Starting from equation (10), the Heston model
corresponds to the choice

α(t, St, vt)
.
= θ(v̄ − vt), v̄ > 0, θ > 0,

β(t, St, vt) ≡ 1.

In other words, vt is a Cox-Ingersoll-Ross (CIR) process, where v̄ is the so
called long term mean and θ represents the speed of reversion. This terminology
reflects the fact that, for sufficiently large times, vt will move around the value
v̄ with an intensity depending on the magnitude of v̄. An important feature
of the CIR process is, under some conditions on parameters, the positivity: in
particular, we have to impose 2θv̄ ≥ η2.
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3.2.1 The pricing equation

In the BS case, as well as in the SV case, there is only one source of
randomness, more precisely the process Wt, but in the SV case we have also
random changes in the volatility to be hedged. The idea is to set up a portfolio
containing the option of interest, a quantity −Δ1 of the underlying asset and
a quantity −Δ2 of another asset depending on the volatility value vt. Differen-
tiating the portfolio value and imposing the usual risk-free conditions (random
terms equal to zero and return equal to r), see [15] for further details, we end
up with the following PDE:

∂C

∂t
+

1

2
vtS

2
t

∂2C

∂S2
+ rSt

∂C

∂S
+ ρηvtβSt

∂2C

∂v∂S
+

1

2
η2vtβ

2 ∂
2C

∂v2

= rC − (α− φβ
√
vt)

∂C

∂v
,

(11)

where φ = φ(t, St, vt) is the so called market price of volatility risk, and can be
seen as the extra return (required by the investors) per unit of volatility risk.
Defining

α̃
.
= α− φβ

√
vt

as the drift of the volatility vt process under the risk-neutral measure, we could
rewrite equation (11) in a more compact way as

∂C

∂t
+
1

2
vtS

2
t

∂2C

∂S2
+rSt

∂C

∂S
+ρηvtβSt

∂2C

∂v∂S
+
1

2
η2vtβ

2 ∂
2C

∂v2
= rC−α̃

∂C

∂v
. (12)

Equation (12) is a good point to start with, if the aim is to calibrate the SV
model to option prices, which are closely connected to the risk-neutral measure.
In particular, we can assume that the SV model of interest, once fitted the
related parameters to option prices, generates the risk-neutral measure such
that the market price of volatility risk φ is equal to zero. This assumption makes
sense when we are interested only in the pricing part, not in the statistical
properties, which are described by the physical measure.

3.2.2 Calibrating the parameters of the Heston model

The main advantage of the Heston model with respect to other (poten-
tially more realistic) stochastic volatility models is the existence of a fast and
easily implemented quasi-closed form solution for European options, see [15]
for the derivation. This computational efficiency in the valuation of European
options becomes useful when calibrating the model to real option prices. How
can we perform the calibration? The simplest way is to minimize the distance
between the observed European call option prices and the theoretical ones. If
we denote by θ the set of parameters of the Heston model, then we have to
solve the non-linear least squares

θ̄ = argmin
θ∈Θ

N∑
i=1

(
Cobs

i − Ci(θ)
)2

, (13)

where Cobs
i = Cobs(Ki, Ti), i = 1, . . . , N, is the set of observed option prices,

while Ci(θ) = Ci(Ki, Ti; θ), i = 1, . . . , N, is the set of option prices produced
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by the Heston model, and Θ denotes the parameter space. Alternatively, one
could perform the minimization in equation (13) using a dataset of implied
volatilities instead of the corresponding quoted option prices.

A different approach is adopted, for instance, in [1], and it is based on the
Maximum Likelihood method. We can imagine the stock price St at time t as
a function of a vector of state variables Xt following a multivariate stochastic
volatility dynamic as in equation (10), i.e., St = f(Xt) for some function f .
Usually, either the stock price itself (or its logarithm) is taken as one of the
state variables, hence we write Xt = (St, Yt)

�, where Yt is the remaining set of
state variables of length N . In general, part of the state vector Xt can not be
directly observed. In [1], the idea is to assume that both a time series of stock
prices and a vector of quoted option prices are observed. The latter vector at
time t is denoted by Ct, and must be used in order to infer the time series for
Yt. If Yt is multidimensional then a sufficient number of different option prices
is needed. Roughly speaking, there are two ways to extract the value of Yt

from observed data:

• The first method is to compute option prices as a function of St and Yt,
for each parameter vector considered during the estimation procedure.
In this way it is possible to identify the parameters both under the
physical measure and the risk-neutral one.

• The second method consists in using the BS implied volatility as a
proxy for the instantaneous volatility of the stock. This is a simplifying
procedure, and it can be applied only in the case of a single stochastic
volatility state variable.

Since, in general, the transition likelihood function for a stochastic volatility
model is not known in closed form, then an approximation method must be
used, see [2]. In this way it is possible to express, in an approximate closed form,
the joint likelihood of Xt. Then, in order to find the likelihood of (St, Ct)

�,
which is entirely observed, it is necessary to multiply the likelihood of the
vector Xt by an appropriate jacobian term. The last step is not necessary
when a proxy for Yt is used. For further details, see [1].
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