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Abstract. Characterization theorems for several properties possessed by customer

equivalent utility insurance premium principle are presented. Demonstrated theorems

cover cases of additivity, consistency, iterativity, and scale invariance properties. We

show also that for customer zero utility principle subjected to pricing of only strictly

positive risks, class of utility functions producing scale invariant premiums is larger than

in the general case.

Характеризацiйнi теореми для пiдрахунку вартостi
страхових контрактiв за принципом еквiвалентної корисностi
клiєнта

М. В. Працьовитий,
Нацiональний педагогiчний унiверситет iменi М.П.Драгоманова

В. О. Дрозденко,
Нацiональний педагогiчний унiверситет iменi М.П.Драгоманова

Анотацiя. В роботi представлено характеризацiйнi теореми, що стосуються вико-
нання декiлькох бажаних властивостей принципом еквiвалентної корисностi клiєнта
пiдрахунку вартостi страхових контрактiв. Представленi теореми охоплюють влас-
тивiсть адитивностi, конзистентностi, iтеративностi та мультиплiкативної iнварiант-
ностi. Ми показуємо також, що у випадку звуження принципу нульової корисностi
клiєнта до оцiнювання лише строго позитивних ризикiв, клас функцiй корисностi,
якi породжують мультиплiкативно-iнварiантнi премiї є ширшим нiж у загальному
випадку.

1. Introduction

Let us consider random variable X representing size of insurance compensation related

to a particular insurance pact. Premium to be paid for risk X will be denoted as π[X].
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In majority of cases random variable X is assumed to be a non-negative random

variable i.e. it takes vale zero if the contract will not produce a claim and will be equal to

the claim size if there will be a claim. In some case, however, negative values of variable

X are also aloud; such negative values are often interpreted as compensations which

have to be paid by the customer to the insurance company, for example, as penalties for

interruption of contract conditions.

Let us now define several insurance premium calculation principles which we would

like to investigate.

Customer equivalent utility premium for riskX, which we denote as πc.e.u.[X], is defined

as solution to the equation

u(ω − πc.e.u.[X]) = E[u(ω −X)], (1)

where ω is customer’s capital at the moment when the contract is initiated, and function

u(x) (real valued function of real parameter) is customer’s utility function i.e. it satisfies

conditions u′(x) > 0 and u′′(x) ≤ 0 for x ∈ R.
In some cases customer’s utility function is selected in such a way that value u(0)

represents customer’s utility at the moment when the contract is initiated. In such cases

equation (1) for risk X is replaced by the equation

u(−π[X]) = E[u(−X)] (2)

and corresponding method of pricing of insurance contracts is called customer zero utility

premium calculation principle. Obtained in such a way premium in the article will be

denoted as πc.z.u.[X].

Sometimes customer equivalent utility premium calculation principle and customer

zero utility premium calculation principle are applied to some special classes of risks: as

an example of such a class one can mention class of all non-negative risks, alternatively one

could mention class of non-negative risks bounded from above by some fixed real value,

etc. In such cases domain of function u(x) could be a subset of R such that equation

(1) or, alternatively, equation (2), depending on chosen method of pricing, will preserve

its correct mathematical meaning, moreover, monotonicity and concavity properties of

function u(x) should also be preserved.

Net premium for risk X, which in the article will be denoted as πnet[X], is defined as

expected value of losses associated with risk X i.e.

πnet[X] = E[X].
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Exponential premium, dependent on parameter β, for risk X which in the article will

be denoted as πexp(β)[X], is defined in the following way

πexp(β)[X] =
1

β
log
(
E[eβX ]

)
, for β > 0.

We will say that a premium calculation principle π[X] possesses:

additivity property if for any two independent risks X1 and X2 holds identity

π[X1 +X2] = π[X1] + π[X2]; (3)

consistency property if for any risk X and any real constant c (if a pricing method is

defined only for non-negative risks then constant c can be claimed to be non-negative in

order to avoid situations when X+ c < 0 i.e. situations when value π[X+ c] is undefined)

holds identity

π[X + c] = π[X] + c; (4)

iterativity property if for any two risks X and Y holds identity

π[π[X|Y ]] = π[X]; (5)

scale invariance property if for any risk X and any positive real constant Θ holds identity

π[ΘX] = Θ π[X]; (6)

property of no unjustified risk loading if for any risk X such that P{X = C} = 1 for

some real constant C (different constants can be chosen for different risks), the following

equation holds

π[X] = C. (7)

More information about defined methods of pricing of insurance contracts as well

as properties that can be possessed by insurance premium calculation principles can be

found, for example, in Asmussen and Albrecher (2010), Boland (2007), Bowers et al

(1997), Bühlmann (1970), Dickson (2005), Gerber (1979), De Vylder et al (1984), De

Vylder et al (1986), Kaas et al (2008), Kremer (1999), Rolski et al (1998), Straub (1988).

We would like to mention that research related to theorems of characterization type

for properties possessed by certain insurance premium calculation principles was initiated

by the Swiss mathematician Hans-Ulrich Gerber, see Gerber (1979). Gerber himself

has proven characterization theorems for consistency and additivity properties of mean

value premium principle and characterization theorem for iterativity property of insurer

zero utility premium principle. Corresponding theorems for customer equivalent utility

premium calculation principle and customer zero utility premium calculation principle

were still missing in the literature.
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2. Additivity Property

The following theorem describes necessary and sufficient conditions for attainment of

additivity property by customer equivalent utility premium calculation principle.

1. Customer equivalent utility premium calculation principle possesses additivity prop-

erty if and only if u(x) = ax+ b, for a > 0, or u(x) = −αe−βx+ γ, for min[α, β] > 0, i.e.

only in the cases when it coincides either with net premium principle or with exponential

premium principle.

Observe that class of functions u(x) = −αe−βx + γ, for min[α, β] > 0, is quite rich.

It contains, for example, all functions of the form u(x) = −τ−x, for some real constant

τ > 1, because function u(x) = −τ−x can be represented as u(x) = −e− log(τ)x, this means

that in the considered case β := log(τ).

Proof. Let us from the beginning prove sufficiency of the statement. We start from

the case of u(x) = ax + b, for a > 0. Indeed, in this case for any two independent risks

X1 and X2, and any customer’s initial capital ω, from equation (1) follows

a(ω − πc.e.u.[Xi]) + b = E[a(ω −Xi) + b], for i = 1, 2,

thus

πc.e.u.[Xi] = E[Xi] = πnet[Xi], for i = 1, 2.

On the other hand, from the same equation follows

a(ω − πc.e.u.[X1 +X2]) + b = E[a(ω −X1 −X2) + b],

hence

πc.e.u.[X1 +X2] = E[X1] + E[X2] = πc.e.u.[X1] + πc.e.u.[X2],

so, we could see that customer equivalent utility premium calculation principle possesses

additivity property in the case of linear customer’s utility function.

Let us now switch to the case of u(x) = −αe−βx + γ, for min[α, β] > 0. Here for any

independent risks X1 and X2, and any customer’s initial capital ω, we get

−αe−β(ω−πc.e.u.[Xi]) + γ = E[−αe−β(ω−Xi) + γ], for i = 1, 2,

which yields

πc.e.u.[Xi] =
1

β
log(E[eβXi ]) = πexp(β)[Xi], for i = 1, 2.

Moreover

−αe−β(ω−πc.e.u.[X1+X2]) + γ = E[−αe−β(ω−X1−X2) + γ] = −αe−βωE[eβX1 ]E[eβX2 ] + γ,
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hence

πc.e.u.[X1 +X2] =
1

β
log(E[eβX1 ]) +

1

β
log(E[eβX2 ]) = πc.e.u.[X1] + πc.e.u.[X2],

and as we have seen, additivity property is possessed by customer equivalent utility pre-

mium calculation principle in the case of exponential customer’s utility function.

Proof of the sufficiency was finished, so we can start to prove the necessity.

Observe that customer equivalent utility premium calculation principle is invariant

with respect to linear transformations of function u(x), i.e. principle based on utility

function u(x) and principle based on utility function ū(x) = l1u(x) + l2, for l1 > 0, will

produce the same premiums. Here condition l1 > 0 is imposed because otherwise the

assumption of positivity of first derivative of function ū(x) will vanish.

In order to simplify the computations, we will fix value of customer’s initial capital ω,

derive all possible representations (in the case when customer equivalent utility principle

is additive) for function ū(x) with

l1 = 1/u′(ω) and l2 = −u(ω)/u′(ω),

and then we will switch back to function u(x).

Observe that just defined utility function ū(x) satisfies the following boundary condi-

tions

ū(ω) = 0, ū′(ω) = 1, and ū′′(ω) = κ, (8)

for some constant κ ≤ 0.

Let us now consider risk X which takes only two possible values, namely t (here t is

any real number different from zero) and 0 with probabilities p and 1 − p respectively.

Risk X can be viewed as a random function of parameters p and t, and, therefore, within

the proof of Theorem 1 will be denoted as X t
p.

Equation (1) based on utility function ū(x) for risk X t
p will have a form

ū(ω − πc.e.u.[X
t
p]) = ū(ω − t)p+ ū(ω)(1− p). (9)

Putting p = 0 into (9), obtain

ū(ω − πc.e.u.[X
t
0]) = ū(ω). (10)

Since ū′(x) > 0 for all x, then from (10) follows

πc.e.u.[X
t
0] = 0. (11)

Let us calculate partial derivatives with respect to p from both sides of equation (9)

−ū′(ω − πc.e.u.[X
t
p]) ·

∂

∂p
πc.e.u.[X

t
p] = ū(ω − t)− ū(ω). (12)
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Putting p = 0 into equation (12), get

−ū′(ω − πc.e.u.[X
t
0]) ·

∂

∂p
πc.e.u.[X

t
p]

∣∣∣∣
p=0

= ū(ω − t)− ū(ω). (13)

Combination of (11) and (13) implies

−ū′(ω) · ∂

∂p
πc.e.u.[X

t
p]

∣∣∣∣
p=0

= ū(ω − t)− ū(ω). (14)

Substituting boundary conditions ū(ω) = 0 and ū′(ω) = 1 into equation (14), we obtain

representation for partial derivative with respect to parameter p of the premium at point

p = 0, namely,
∂

∂p
πc.e.u.[X

t
p]

∣∣∣∣
p=0

= −ū(ω − t). (15)

Let us consider also risk Y , independent of X, taking two possible values, namely h

(here h is any non-zero real number) and 0 with probabilities q and 1 − q respectively.

Being a random function of parameters h and q risk Y will be denoted as Y h
q .

Using manipulations similar to those performed with risk X t
p, one can conclude that

πc.e.u.[Y
h
0 ] = 0, (16)

and that partial derivative with respect to parameter q of the premium at point q = 0 is

∂

∂q
πc.e.u.[Y

h
q ]

∣∣∣∣
q=0

= −ū(ω − h). (17)

Now let us look at risk Zt,h
p,q defined in the following way

Zt,h
p,q := X t

p + Y h
q .

Risk Zt,h
p,q will take values t + h, t, h, and 0 with probabilities p q, p (1 − q), (1 − p)q,

and (1− p)(1− q) respectively.

If customer equivalent utility principle is additive then the following must hold

πc.e.u.[Z
t,h
p,q ] = πc.e.u.[X

t
p] + πc.e.u.[Y

h
q ].

In this case equation (1) for risk Zt,h
p,q based on function ū(x) will have a form

ū(ω − πc.e.u.[X
t
p]− πc.e.u.[Y

h
q ]) = ū(ω − t− h)p q+

+ ū(ω − t)p (1− q) + ū(ω − h)(1− p)q + ū(ω)(1− p)(1− q).
(18)

Using boundary condition ū(ω) = 0 equation (18) can be slightly simplified to the follow-

ing
ū(ω − πc.e.u.[X

t
p]− πc.e.u.[Y

h
q ]) = ū(ω − t− h)p q+

+ ū(ω − t)p (1− q) + ū(ω − h)(1− p)q.
(19)
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Let us calculate partial derivatives with respect to p from both sides of equation (19)

− ū′(ω − πc.e.u.[X
t
p]− πc.e.u.[Y

h
q ]) ·

∂

∂p
πc.e.u.[X

t
p] =

= ū(ω − t− h)q + ū(ω − t)(1− q)− ū(ω − h)q.

(20)

Next step is to take partial derivatives with respect to q from both sides of equa-

tion (20), obtain

ū′′(ω − πc.e.u.[X
t
p]− πc.e.u.[Y

h
q ]) ·

∂

∂p
πc.e.u.[X

t
p] ·

∂

∂q
πc.e.u.[Y

h
q ] =

= ū(ω − t− h)− ū(ω − t)− ū(ω − h).

(21)

Substituting p = q = 0 into equation (21) and using identities (11), (15), (16), and

(17), as well as boundary condition ū′′(ω) = κ, we finally get equation which function ū(·)
has to satisfy for customer equivalent utility principle to be additive

κ ū(ω − t) ū(ω − h) = ū(ω − t− h)− ū(ω − t)− ū(ω − h). (22)

Solving equation (22), we will investigate separately cases of κ = 0 and κ < 0.

In the case of κ = 0 equation (22) will be simplified to the following

ū(ω − t− h) = ū(ω − t) + ū(ω − h). (23)

Taking partial derivatives with respect to h from both sides of equation (23), obtain

ū′(ω − t− h) = ū′(ω − h). (24)

Since function ū(·) was assumed to be twice differentiable, then function ū′(·) must

be continuous. Therefore must exist limit of ū′(ω − h) as h tends to zero and it has to

be equal to ū′(ω). Taking limits as h tends to zero from both sides of equation (24) and

using boundary condition ū′(ω) = 1, obtain

ū′(ω − t) = 1. (25)

Parameter t was taken from R \ {0}, however due to continuity (which follows from

differentiability, since function ū(·) is twice differentiable) of function ū′(·), equation (25)

can be rewritten in terms of parameter x ∈ R.
Using (25) and boundary condition ū(ω) = 0 we finally get first admissible represen-

tation for function ū(x), namely,

ū(x) = x− ω. (26)

Combining (26) with transformation identity

ū(x) = l1u(x) + l2, for l1 = 1/u′(ω) and l2 = −u(ω)/u′(ω), (27)

we finally get corresponding admissible representation for original utility function u(x)

u(x) = u′(ω)(x− ω) + u(ω). (28)
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Equation (28) means that tangent straight line to function u(x) at point ω coincides with

function u(x) itself, hence function u(x) must be a function of the form

u(x) = ax+ b

for some constants a and b. Moreover, constant a must be a strictly positive constant be-

cause otherwise this would contradict with the assumption of positivity of first derivative

of function u(x).

Let us now consider case of κ < 0. Taking repeatedly partial derivatives with respect

to t and then with respect to h from both sides of (22), we get equation

κ ū′(ω − t) ū′(ω − h) = ū′′(ω − t− h) (29)

Due to continuity of ū′(·), one can define ū′(ω) as limh→0 ū
′(ω − h), then, switching

to the limit as h tends to zero from both sides of equation (29), and using boundary

condition ū′(ω) = 1, obtain

ū′′(ω − t) = κ ū′(ω − t). (30)

From equation (31) and boundary condition ū′(ω) = 1, follows

ū′(ω − t) = eκ (ω−t) · e−κω. (31)

Using (31) and boundary condition ū(ω) = 0 we finally get admissible representation

for utility function ū(·) in the case of κ < 0, namely,

ū(ω − t) =
eκ (ω−t) · e−κω − 1

κ
,

or equivalently, again due to continuity of ū(·), in terms of parameter x ∈ R,

ū(x) =
eκx · e−κω − 1

κ
. (32)

Taking into account that ū′′(ω) = κ, using representation (32) and transformation

identity (27), we finally get corresponding admissible representation for original utility

function u(x), or more precisely,

u(x) =
u′(ω) e−ū

′′(ω)·ω

ū′′(ω)
· eū′′(ω)·x − u′(ω)

ū′′(ω)
+ u(ω). (33)

From representation (33) follows that in the case of ū′′(ω) < 0 function u(x) must be

a function of the form

u(x) = −αe−βx + γ

for some constants α, β, and γ. Moreover conditions u′(ω) > 0 and ū′′(ω) < 0 imply

additional restrictions on parameters α and β, namely, both of them must be strictly

positive constants, or equivalently, min[α, β] > 0.

This completes the proof of Theorem 1. �
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Let us now show that customer equivalent utility premium principle coincides with net

premium principle if and only if u(x) = ax+ b, for a > 0, and coincides with exponential

premium principle if and only if u(x) = −αe−βx + γ, for min[α, β] > 0.

For this reason we will need inequality

πexp(β)[X] =
1

β
log(E[eβX ]) ≥ 1

β
log(eβ E[X]) = E[X] = πnet[X],

and, moreover, exact equality in the inequality E[eβX ] ≥ eβ E[X] appears if and only if

P{X = C} = 1 for some constant C ∈ R. Therefore, generally speaking, net premium

principle is not a special case of exponential premium principle and viceversa.

Let us now assume that for some function u(x), different from exponential function,

customer equivalent utility premium principle will be equivalent to exponential premium

principle. Then, due to additivity of exponential premium principle, such method of

pricing must be additive. However in the proof of Theorem 1 was shown that customer

equivalent utility premium calculation principle is additive if and only if u(x) = ax + b,

for a > 0, and u(x) = −αe−βx + γ, for min[α, β] > 0. Here case of u(x) = ax + b,

for a > 0, correspond to net premium principle, which, as was demonstrated, generally

speaking is not a special case of exponential premium principle. As we see, original

assumption about existence of non-exponential customer’s utility function u(x) which

would produce a principle equivalent to the exponential premium principle leads to a

contradiction. Therefore, case of u(x) = −αe−βx + γ, for min[α, β] > 0, is indeed the

only case when customer equivalent utility premium principle is equivalent to exponential

premium principle.

Using similar contradiction technique one can conclude that the case of u(x) = ax+ b,

for a > 0, is the only case when customer equivalent utility premium principle is equivalent

to net premium principle.

Since customer’s initial capital in the proof of Theorem 1 was chosen arbitrary and

no restriction on it had been used within the proof, then we can formulate the following

corollary to Theorem 1.

1. Customer zero utility premium calculation principle possesses additivity property

if and only if u(x) = ax + b, for a > 0, or u(x) = −αe−βx + γ, for min[α, β] > 0, i.e.

only in the cases when it coincides either with net premium principle or with exponential

premium principle.

Alternatively one can prove Theorem 1 in the following way. Sufficiency, as usual,

can be shown by direct checking. Then, in order to show the necessity, we show first

that customer equivalent utility premium calculation principle possesses property of no

unjustified risk loading. Indeed, for any risk X such that P{X = C} = 1 (here C is some
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real constant), for any customer’s initial capital ω and any customer’s utility function

u(x), equivalent utility equation (1) will have a form

u(ω − πc.e.u.[X]) = E[u(ω −X)] = u(ω − C). (34)

Since customer’s utility function u(x) is a strictly increasing function, then from equation

(34) follows

πc.e.u.[X] = C,

hence property of no unjustified risk loading is possessed. Then, before proving Theorem 1

one have to prove Theorem 2. If customer equivalent utility principle for some utility

function u(x) is additive, then by definition identity (3) must hold for any two independent

risks X1 and X2. Therefore, for any risk X and any real constant C in the case of additive

customer equivalent utility premium calculation principle must hold identity

πc.e.u.[X + C] = πc.e.u.[X] + πc.e.u.[C]. (35)

Due to property of no unjustified risk loading, equation (35) can be rewritten in the

following form

πc.e.u.[X + C] = πc.e.u.[X] + C.

This means that additive customer equivalent utility premium calculation principle has

to be consistent. Hence from Theorem 2 follows that customer’s utility function u(x) can

only be a function of the forms u(x) = ax + b, for a > 0, or u(x) = −αe−βx + γ, for

min[α, β] > 0.

3. Consistency Property

The following theorem describes necessary and sufficient conditions imposed on cus-

tomer’s utility function under which consistency property is possessed by customer equiv-

alent utility premium calculation principle.

2. Customer equivalent utility premium calculation principle possesses consistency

property if and only if u(x) = ax + b, for a > 0, or u(x) = −αe−βx + γ, for min[α, β] >

0, i.e. only in the cases when it coincides either with net premium principle or with

exponential premium principle.

Proof. Let us from the beginning prove sufficiency of the statement. We start from

linear utility function u(x) = ax + b, for a > 0, and show that in this case customer

equivalent utility premium principle is equivalent to net principle. Indeed, here for any

risk X, and any customer’s initial capital ω, equation (1) will be simplified to the following

a(ω − πc.e.u.[X]) + b = E[a(ω −X) + b],



96 M. V. Pratsiovytyi, V. O. Drozdenko

therefore, in the case of linear customer’s utility function,

πc.e.u.[X] = E[X] = πnet[X].

Moreover, for any real constant c, the same risk, the same customer’s initial capital, and

the same linear customer’s utility function, form equation (1) we get

a(ω − πc.e.u.[X + c]) + b = E[a(ω −X − c) + b],

hence, in the considered case holds identity

πc.e.u.[X + c] = E[X] + c = πc.e.u.[X] + c,

and as we see, customer equivalent utility premium calculation principle possesses consis-

tency property in the case of linear customer’s utility function.

Let us now switch to the case of u(x) = −αe−βx + γ, for min[α, β] > 0. We show

first that it is the case when customer equivalent utility premium principle is equivalent

to exponential premium principle. Indeed, here for any risk X from equation (1) we get

−αe−β(ω−πc.e.u.[X]) + γ = E[−αe−β(ω−X) + γ],

which yields

πc.e.u.[X] =
1

β
log(E[eβX ]) = πexp(β)[X].

Then again, for any real constant c, the same risk, the same customer’s initial capital,

and the same exponential customer’s utility function from equation (1) we get

−αe−β(ω−πc.e.u.[X+c]) + γ = E[−αe−β(ω−X−c) + γ],

hence

πc.e.u.[X + c] =
1

β
log(E[eβX ]) + c = πc.e.u.[X] + c

so we have seen that customer equivalent utility premium calculation principle possesses

consistency property in the case of exponential customer’s utility function.

Proof of the sufficiency was finished, so can start to prove the necessity.

Due to the invariance of customer equivalent utility premium calculation principle

with respect to linear transformations of customer’s utility function, like in the proof of

the previous theorem, we obtain first admissible representations for utility function ū(x)

defined as

ū(x) = l1u(x) + l2 with l1 = 1/u′(ω) and l2 = −u(ω)/u′(ω), (36)

and then will switch back to original utility function u(x).

Let us remind that defined in such a way utility function ū(x) will satisfy the following

boundary conditions

ū(ω) = 0, ū′(ω) = 1, and ū′′(ω) = κ,
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for some constant κ ≤ 0.

Let us now consider risk X taking only two possible values, namely t (here t is any

real number different from zero) and 0 with probabilities p and 1− p respectively. Being

a random function of parameters t and p, risk X within the proof of Theorem 2 will be

denoted as X t
p.

Customer equivalent utility equation (1) based on utility function ū(x) for risk X t
p will

have a form

ū(ω − πc.e.u.[X
t
p]) = ū(ω − t) · p+ ū(ω) · (1− p). (37)

Substituting p = 0 into equation (37), obtain

ū(ω − πc.e.u.[X
t
0]) = ū(ω). (38)

Since ū(·) is a strictly increasing function, then from equation (38) follows

πc.e.u.[X
t
0] = 0. (39)

Let us now calculate partial derivatives with respect to parameter p from both sides

of equation (37), obtain

−ū′(ω − πc.e.u.[X
t
p]) ·

∂

∂p
πc.e.u.[X

t
p] = ū(ω − t)− ū(ω). (40)

Substituting p = 0 into equation (40), using identity (39), as well as boundary condi-

tions ū(ω) = 0 and ū′(ω) = 1, we get representation for partial derivative of the premium

with respect to parameter p at point p = 0, namely

∂

∂p
πc.e.u.[X

t
p]

∣∣∣∣
p=0

= −ū(ω − t). (41)

Next step is to take partial derivative with respect to p from both sides of equation

(40), here we get

ū′′(ω − πc.e.u.[X
t
p]) ·

(
∂

∂p
πc.e.u.[X

t
p]

)2

− ū′(ω − πc.e.u.[X
t
p]) ·

∂2

(∂p)2
πc.e.u.[X

t
p] = 0. (42)

Substituting value p = 0 into equation (42) and then using identities (39) and (41) as well

as boundary conditions ū′(ω) = 1 and ū′′(ω) = κ we get representation for the second

partial derivative of the premium with respect to parameter p at point p = 0, namely

∂2

(∂p)2
πc.e.u.[X

t
p]

∣∣∣∣
p=0

= κ ū2(ω − t). (43)

In the case of consistent customer equivalent utility premium calculation principle

must hold identity

πc.e.u.[X
t
p + c] = πc.e.u.[X

t
p] + c, for c ∈ R,
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therefore, equivalent utility equation (1) based on utility function ū(x) for risk X t
p+ c will

have a form

ū(ω − πc.e.u.[X
t
p]− c) = ū(ω − t− c) · p+ ū(ω − c) · (1− p). (44)

Let us now calculate partial derivatives with respect to parameter p from both sides of

equation (44)

−ū′(ω − πc.e.u.[X
t
p]− c) · ∂

∂p
πc.e.u.[X

t
p] = ū(ω − t− c)− ū(ω − c). (45)

Next step is to take partial derivatives with respect to parameter p ones more, this time

from both sides of equation (45), here we get

ū′′(ω − πc.e.u.[X
t
p]− c) ·

(
∂

∂p
πc.e.u.[X

t
p]

)2

−

− ū′(ω − πc.e.u.[X
t
p]− c) · ∂2

(∂p)2
πc.e.u.[X

t
p] = 0

(46)

Substituting p = 0 into equation (46) and using identities (39) and (41), obtain

ū′′(ω − c) · ū2(ω − t)− ū′(ω − c) · ∂2

(∂p)2
πc.e.u.[X

t
p]

∣∣∣∣
p=0

= 0. (47)

Since utility function ū(x) is a strictly increasing function (i.e. ū′(x) always takes strictly

positive values) then with out of loss of generality equation (47) can be rewritten in the

following equivalent form

∂2

(∂p)2
πc.e.u.[X

t
p]

∣∣∣∣
p=0

=
ū′′(ω − c) · ū2(ω − t)

ū′(ω − c)
. (48)

Observe that equations (43) and (48) have equal left hand sides, hence their right

hand sides also have to be equal. In this way we get equation

κ ū2(ω − t) =
ū′′(ω − c) · ū2(ω − t)

ū′(ω − c)
, (49)

which after cancelation of ū2(ω − t) multiplier will be simplified to the following

ū′′(ω − c)

ū′(ω − c)
= κ, for all c ∈ R. (50)

Equation (50) is the equation which utility function ū(·) has to satisfy for the cus-

tomer equivalent utility premium calculation principle to be consistent. We will solve the

equation separately for the cases of κ = 0 and κ < 0.

In the case of κ = 0 equation (50) will be simplified to the following

ū′′(ω − c) = 0.

This means that in the mentioned case function ū(x) must be a function of the form

ū(x) = āx+ b̄
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for some constants ā and b̄. Using boundary conditions ū(ω) = 0 and ū′(ω) = 1 we find

out values of constants ā and b̄, or more precisely,

ā = 1 and b̄ = −ω.

This gives us exact admissible representation for utility function ū(x), namely,

ū(x) = x− ω. (51)

Combining representation (51) with transformation relation (36) we get relation con-

taining corresponding original utility function u(x)

x− ω =
u(x)

u′(ω)
− u(ω)

u′(ω)
,

or equivalently

u(x) = u′(ω)x+ u(ω)− ω u′(ω),

therefore function u(x) must be a function of the form

u(x) = ax+ b

for some constants a and b. Assumption of positivity of first derivative of function u(x)

gives us additional restriction on parameter a: parameter a must be a strictly positive

constant.

Let us now consider case of κ < 0. It seems to be convenient to rewrite equation (50)

in the following form

ū′′(ω − c) = κ ū′(ω − c). (52)

From equation (52), using boundary condition ū′(ω) = 1, obtain

ū′(ω − c) = eκ (ω−c) · e−κω. (53)

Using equation (53) and boundary condition ū(ω) = 0 we get second admissible rep-

resentation for utility function ū(·), namely,

ū(ω − c) =
eκ (ω−c) · e−κω − 1

κ
, for c ∈ R,

or equivalently in terms of parameter x,

ū(x) =
eκx · e−κω − 1

κ
, for x ∈ R. (54)

Taking into account that ū′′(ω) = κ, using representation (54) and transformation

relation (36), we finally get corresponding admissible representation for the original utility

function, namely, utility function u(x),

u(x) =
u′(ω) e−ū

′′(ω)·ω

ū′′(ω)
· eū′′(ω)·x − u′(ω)

ū′′(ω)
+ u(ω). (55)
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From representation (55) follows that in the case of ū′′(ω) < 0 function u(x) must be

a function of the form

u(x) = −αe−βx + γ

for some constants α, β, and γ. Moreover conditions u′(ω) > 0 and ū′′(ω) < 0 imply

additional restrictions on parameters α and β, namely, both of them must be strictly

positive constants, or equivalently, min[α, β] > 0.

This completes the proof of Theorem 2. �

In a way similar to one presented in the previous section, proof of Theorem 2 can

be used for showing that case of u(x) = ax + b, for a > 0, is the only case when cus-

tomer equivalent utility premium principle is equivalent to net premium principle and

that u(x) = −αe−βx + γ, for min[α, β] > 0, is the only case when customer equivalent

utility premium principle is equivalent to exponential premium principle.

Since we did not use any restrictions on customer’s initial capital within the proof of

Theorem 2, then we can formulate the following corollary to Theorem 2.

2. Customer zero utility premium calculation principle possesses consistency property

if and only if u(x) = ax + b, for a > 0, or u(x) = −αe−βx + γ, for min[α, β] > 0, i.e.

only in the cases when it coincides either with net premium principle or with exponential

premium principle.

4. Iterativity Property

In contrast to insurer equivalent utility premium calculation principle which possesses

iterativity property only in the cases of exponential and linear utility functions, customer

equivalent utility premium calculation principle possesses iterativity property with arbi-

trary choice of the admissible customer’s utility function. We believe that this observation

deserves to be formulated in a form of theorem.

3. Customer’s equivalent utility premium calculation principle possesses iterativity

property for arbitrary choice of the initial capital ω and arbitrary choice of the utility

function u(x) ∈ C2(R) such that u′(x) > 0 and u′′(x) ≤ 0 for all x ∈ R.

Proof. Here for any two risks X and Y , any customer’s initial capital ω as well as

any admissible customer’s utility function u(x), we get

πc.e.u.[πc.e.u.[X|Y ]] = −u−1(E[u(ω − πc.e.u.[X|Y ])]) + ω

= −u−1(E[u(ω + u−1(E[u(ω −X)|Y ])− ω)]) + ω

= −u−1(E[E[u(ω −X)|Y ]]) + ω

= −u−1(E[u(ω −X)]) + ω = πc.e.u.[X].
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Hence statement of Theorem 3 indeed holds. �

Since customer’s initial capital in the proof of Theorem 3 was chosen arbitrary and

no restrictions on it had been used within the proof, then we can formulate the following

corollary to Theorem 3.

3. Customer’s zero utility premium calculation principle always possesses iterativity

property for arbitrary choice of customer’s utility function u(x) ∈ C2(R) such that u′(x) >

0 and u′′(x) ≤ 0 for all x ∈ R.

5. Scale Invariance Property

The following theorem describes conditions of attainment of scale invariance property

by customer equivalent utility premium calculation principle.

4. Customer equivalent utility premium calculation principle possesses scale invari-

ance property if and only if u(x) = ax+b, for a > 0, i.e. only in the case when it coincides

with net premium principle.

Proof. We begin again from the sufficiency.

From equation (1), for linear utility function u(x) = ax + b with a > 0, any risk X,

and any customer’s initial capital ω, follows

aω − aπc.e.u.[X] + b = E[aω − aX + b] = aω − aE[X] + b,

hence

πc.e.u.[X] = E[X] = πnet[X].

On the other hand, from equation (1), for any Θ > 0, the same risk X, the same

customer’s initial capital ω, and the same customer’s utility function, follows

aω − aπc.e.u.[ΘX] + b = E[aω − aΘX + b] = aω − aΘE[X] + b,

thus

πc.e.u.[ΘX] = ΘE[X] = Θπc.e.u.[X],

and we see that customer equivalent utility premium calculation principle possesses scale

invariance property in the case of linear customer’s utility function.

Proof of the sufficiency was finished, so we can start to prove the necessity.

To show that customer equivalent utility premium calculation principle with non-linear

customer utility function u(x) will not possess scale invariance property, we will choose

risk X which takes only two possible values, namely 0 and t (here t is a non-zero real

constant) with probabilities 1−p and p respectively. Risk X can in this case be considered

as a random function of two parameters, namely p and t, and, therefore, within the proof

of Theorem 4 will be denoted by X t
p.
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For any customer’s initial capital ω, and any admissible customer’s utility function

u(x), customer’s equivalent utility equation (1) for risk X t
p will take a form

u(ω − πc.e.u.[X
t
p]) = u(ω − t) · p+ u(ω) · (1− p). (56)

Substituting p = 0 into equation (56), obtain

u(ω − πc.e.u.[X
t
0]) = u(ω). (57)

Since u(x) is strictly increasing function, then equation (57) yields

πc.e.u.[X
t
0] = 0. (58)

Let us now take partial derivative with respect to p from both sides of equation (56)

−u′(ω − πc.e.u.[X
t
p]) ·

∂

∂p
πc.e.u.[X

t
p] = u(ω − t)− u(ω). (59)

Substituting p = 0 into equation (59) and using identity (58), obtain

−u′(ω) · ∂

∂p
πc.e.u.[X

t
p]

∣∣∣∣
p=0

= u(ω − t)− u(ω). (60)

In the case of scale invariant customer equivalent utility premium calculation principle

for any Θ > 0 must hold identity

πc.e.u.[ΘX
t
p] = Θπc.e.u.[X

t
p],

therefore, in the case when customer equivalent utility premium calculation principle

possesses scale invariance property, equation (1) for risk ΘX t
p will have a form

u(ω −Θπc.e.u.[X
t
p]) = u(ω −Θt) · p+ u(ω) · (1− p). (61)

We are now taking partial derivative with respect to p from both sides of equation (61)

−u′(ω − πc.e.u.[X
t
p]) ·Θ · ∂

∂p
πc.e.u.[X

t
p] = u(ω −Θt)− u(ω). (62)

Substituting p = 0 into equation (62), and using identity (58), obtain

−u′(ω) ·Θ · ∂

∂p
πc.e.u.[X

t
p]

∣∣∣∣
p=0

= u(ω −Θt)− u(ω). (63)

Since Θ > 0, then, with out of loss of generality, equation (63) can be rewritten as follows

−u′(ω) · ∂

∂p
πc.e.u.[X

t
p]

∣∣∣∣
p=0

=
u(ω −Θt)− u(ω)

Θ
. (64)

Observe that equations (60) and (64) have equal left hand sides, this means that their

right hand sides also have to be equal, and in this way we finally get an equation which

customer utility function u(x) has to satisfy for premium calculation principle to be scale

invariant, namely

u(ω − t)− u(ω) =
u(ω −Θt)− u(ω)

Θ
. (65)
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Taking partial derivatives with respect to parameter t from both sides of (65), get

u′(ω − t) = u′(ω −Θt). (66)

By fixing values of parameters ω and t, and changing values of parameter Θ, we will make

u′(ω −Θt) a function of changing variable while value u′(ω − t) will be a fixed constant.

Using this technique and taking into account monotonicity of function u(·) and continuity

of function u′(·), since u(·) ∈ C2(R), using equation (66) we conclude that

u′(x) = a > 0, for x ∈ R.

Integrating yields

u(x) = ax+ b, for x ∈ R, and constant a > 0.

Let us give also a geometrical interpretation showing that non-linear customer utility

functions will not satisfy equation (65). Let us consider two triangles: the first one will

be formed by points (ω − t, u(ω − t)), (ω, u(ω − t)), (ω, u(ω)) and the second one will

be formed by points (ω − Θt, u(ω − Θt)), (ω, u(ω − Θt)), (ω, u(ω)). Observe that both

triangles are right-angled triangles, they have a common vertex at point (ω, u(ω)), and,

moreover, points (ω, u(ω)), (ω, u(ω− t)), and (ω, u(ω−Θt)) lie on the same straight line.

Since t ∈ R \ {0} then, with out of loss of generality, equation (65) can be rewritten as

u(ω)− u(ω − t)

ω − (ω − t)
=

u(ω)− u(ω −Θt)

ω − (ω −Θt)
. (67)

Geometrically, equation (67) can be interpreted as follows: ratio of cathetuses in one of

the triangles is equal to ratio of cathetuses in the other triangle, hence our two considered

triangles are similar triangles. Due to the common vertex, cathetuses which lie on a

common straight line, and vertexes which lie on the same half plane with respect to the

mentioned line, we conclude that hypotenuses will also lie on a common straight line; in

other words, points (ω−Θt, u(ω−Θt)), for any initial capital ω, any non-zero t, and every

Θ > 0, will form a straight line. So, we can conclude that customer’s utility function u(x)

is linear function, i.e. function of the form u(x) = ax+b. Initial assumption of positivity of

first derivative of function u(x) gives us additional restriction on parameter a: parameter

a must be a strictly positive constant. This completes the proof of Theorem 4. �

Applying contradiction technique, proof of Theorem 4 can be used for showing that

case of u(x) = ax+b, for a > 0, is the only case when customer equivalent utility premium

principle coincides with net premium principle. Indeed, let us assume that for some

function u(x), different from linear function, customer equivalent utility principle will

be equivalent to net premium principle. Then, due to linearity property of expectation,

such method of pricing must be scale invariant. However it was shown in the proof of
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Theorem 4 that the only case when customer equivalent utility principle is scale invariant

is the case of u(x) = ax+ b, for a > 0, so we come to a contradiction.

Due to arbitrary choice of customer’s initial capital in the proof of Theorem 4 and no

restrictions on it within the proof, the following corollary to Theorem 4 can be formulated.

4. Customer zero utility premium calculation principle possesses scale invariance

property if and only if u(x) = ax + b, for a > 0, i.e. only in the case when it coincides

with net premium principle.

As was already mentioned, in the case when customer zero utility premium calculation

principle is applied to a special class of risks, it is enough to define utility function u(x) on

a subset A ⊂ R preserving monotonicity and concavity properties, i.e. u(x) must be such

that u′(x) > 0 and u′′(x) ≤ 0 for all x ∈ A, and, moreover, equation (2) must preserve its

correct mathematical meaning for all risks from the mentioned class. It is interesting to

see that in the case of subjecting of customer zero utility premium calculation principle

to pricing of only strictly positive risks class of functions u(x) producing scale invariant

premiums is larger than in the general case. We believe that this observation deserves to

be formulated in a form of theorem.

The following theorem is valid only for customer zero utility principle and not for

customer equivalent utility principle.

5. Customer zero utility premium calculation principle subjected to consideration

of only strictly positive risks possesses scale invariance property if and only if u(x) =

−a(−x)κ + b, for a > 0 and κ ≥ 1, defined for x ∈ (−∞, 0).

Observe that for function u(x) = −a(−x)κ + b with a > 0 and κ > 1 condition

u′(x) > 0 violates at point x = 0, therefore, statement of Theorem 5 does not contradict

statement of Theorem 4.

Proof. Since in the case of strictly positive risk X we get E[X] > 0, then, combining

Jensen inequality

u(−E[X]) ≥ E[u(−X)]

with definition equation (2), we see that customer zero utility premium calculation prin-

ciple will be well-defined if function u(x) will be defined just for x ∈ (−∞, 0) with preser-

vation of monotonicity and concavity assumptions i.e. function u(x) must be defined on

(−∞, 0) such that u′(x) > 0 and u′′(x) ≤ 0 for all x ∈ (−∞, 0).

Let us from the beginning prove sufficiency of the statement. Indeed in the case of

u(x) = −a(−x)κ + b, with a > 0 and κ ≥ 1, for any strictly positive risk X equation (2)

will have a form

−a(πc.z.u.[X])κ + b = E[−aXκ + b] = −aE[Xκ] + b,
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therefore, in the considered case

πc.z.u.[X] = (E[Xκ])1/κ.

On the other hand, for the same function u(x), the same risk X, and any Θ > 0, from

equation (2) follows

−a(πc.z.u.[ΘX])κ + b = E[−a(ΘX)κ + b] = −aΘκE[Xκ] + b

so, here we get

πc.z.u.[ΘX] = Θ(E[Xκ])1/κ = Θπc.z.u.[X],

and as we see, customer zero utility premium calculation principle subjected to consid-

eration of only strictly positive risks possesses scale invariance property in the case of

u(x) = −a(−x)κ + b, for a > 0 and κ ≥ 1, defined for x ∈ (−∞, 0).

Let us now switch to the statement of necessity. In order to show that customer zero

utility premium calculation principle subjected to consideration of only strictly positive

risks with all other types of function u(x) will not possess scale invariance property, we

will consider risk X taking values ε > 0 and 1 with probabilities p and 1− p respectively.

Being a random function of parameters ε and p, risk X within the proof of Theorem 5

will be denoted as Xε
p .

For described risk Xε
p equation (2) will have a form

u(−πc.z.u.[Xε
p ]) = u(−ε) · p+ u(−1) · (1− p). (68)

From equation (68) follows

u(−πc.z.u.[Xε
0 ]) = u(−1),

moreover, since u(x) is a strictly increasing function, then

πc.z.u.[X
ε
0 ] = 1. (69)

Calculating partial derivatives with respect to parameter p from both sides of equation

(68), obtain

−u′(−πc.z.u.[Xε
p ]) ·

∂

∂p
πc.z.u.[X

ε
p ] = u(−ε)− u(−1). (70)

Substituting p = 0 into equation (70), obtain

−u′(−πc.z.u.[Xε
0 ]) ·

∂

∂p
πc.z.u.[X

ε
p ]

∣∣∣∣
p=0

= u(−ε)− u(−1). (71)

Using (69) equation (71) can be rewritten as

−u′(−1) · ∂

∂p
πc.z.u.[X

ε
p ]

∣∣∣∣
p=0

= u(−ε)− u(−1). (72)
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Let us now calculate partial derivatives with respect to parameter p from both sides

of equation (70)

u′′(−πc.z.u.[Xε
p ]) ·

(
∂

∂p
πc.z.u.[X

ε
p ]

)2

− u′(−πc.z.u.[Xε
p ]) ·

∂2

(∂p)2
πc.z.u.[X

ε
p ] = 0. (73)

Substituting p = 0 into equation (73), and using identity (69), obtain

u′′(−1) ·

(
∂

∂p
πc.z.u.[X

ε
p ]

∣∣∣∣
p=0

)2

− u′(−1) ·

(
∂2

(∂p)2
πc.z.u.[X

ε
p ]

∣∣∣∣
p=0

)
= 0. (74)

Taking ε small enough, namely ε < 1, and taking into account strict monotonicity of

function u(x), with out of loss of generality, using (72), we may conclude that

∂

∂p
πc.z.u.[X

ε
p ]

∣∣∣∣
p=0

̸= 0, (75)

hence, equation (74) can be rewritten as

u′′(−1)

u′(−1)
=

(
∂2

(∂p)2
πc.z.u.[X

ε
p ]

∣∣∣∣
p=0

)/(
∂

∂p
πc.z.u.[X

ε
p ]

∣∣∣∣
p=0

)2

. (76)

For any Θ > 0, equation (2) for risk ΘXε
p will take a form

u(−πc.z.u.[ΘXε
p ]) = u(−Θε) · p+ u(−Θ) · (1− p). (77)

In the case of scale invariant customer zero utility premium principle equation (77) can

be rewritten as

u(−Θπc.z.u.[X
ε
p ]) = u(−Θε) · p+ u(−Θ) · (1− p). (78)

Calculating second partial derivative with respect to p from both sides of equation

(78), obtain

u′′(−Θπc.z.u.[X
ε
p ]) ·Θ2 ·

(
∂

∂p
πc.z.u.[X

ε
p ]

)2

−

− u′(−Θπc.z.u.[X
ε
p ]) ·Θ · ∂2

(∂p)2
πc.z.u.[X

ε
p ] = 0.

(79)

Substituting p = 0 into equation (79), canceling Θ factor, and using identity (69), get

u′′(−Θ) ·Θ ·

(
∂

∂p
πc.z.u.[X

ε
p ]

∣∣∣∣
p=0

)2

− u′(−Θ) ·

(
∂2

(∂p)2
πc.z.u.[X

ε
p ]

∣∣∣∣
p=0

)
= 0. (80)

Since u′(−Θ) > 0, then using relation (75), equation (80) can be rewritten as

u′′(−Θ) ·Θ
u′(−Θ)

=

(
∂2

(∂p)2
πc.z.u.[X

ε
p ]

∣∣∣∣
p=0

)/(
∂

∂p
πc.z.u.[X

ε
p ]

∣∣∣∣
p=0

)2

. (81)

Observe that equations (76) and (81) have equal right hand sides, this means that

their left hand sides also have to be equal, in this way we finally get an equation which
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function u(x) has to satisfy in the case of scale invariant customer zero utility premium

calculation principle subjected to consideration of only strictly positive risks, namely,

u′′(−Θ) ·Θ
u′(−Θ)

=
u′′(−1)

u′(−1)
, for all Θ > 0. (82)

Assigning −u′′(−1)/u′(−1) =: κ (since u′′(−1) ≤ 0 and u′(−1) > 0 then κ ≥ 0)

and making substitution z(Θ) := u′(−Θ) equation (82) can be rewritten in the following

equivalent form
dz

z
= κ

dΘ

Θ
,

therefore

log(z(Θ)) = κ log(Θ) + log(C1), for some constant C1 > 0,

and function z(Θ) itself will have a form

z(Θ) = C1Θ
κ.

Switching back to function u′(−Θ), obtain

u′(−Θ) = C1Θ
κ. (83)

Switching back to the original parameter x ∈ (−∞, 0) representation (83) can be rewritten

as

u′(x) = C1(−x)κ.

Taking antiderivative, obtain

u(x) = − C1

κ + 1
(−x)κ+1 + C2,

therefore function u(x) must be a function of the form

u(x) = −a(−x)κ + b, for some real constants a, b, and κ.

Moreover, since C1 > 0 and κ > 0 then a > 0, and since κ ≥ 0 then κ ≥ 1.

This completes the proof of Theorem 5. �
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