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On one class of functions
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and containing singular

and nowhere monotonic functions
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Abstract. In the paper, we consider the infinite system of functional equations de-

pending on sequence of parameters (pn) such that |pn| < 1,
∞∑

n=1
pn = 1. The solution of

this system is the continuous function defined at irrational point of (0, 1) by equality

F (x) = F (Ō1(g1(x), g2(x), . . . , gn(x), . . .)) = βg1(x) +
∑

n≥2

(−1)n−1βgn(x)

n−1∏

i=1

pgi(x),

where β1 = 1, βn+1 = 1 −
n∑

i=1

pi > 0, and Ō1(g1(x), g2(x), . . . , gn(x), . . .) is a formal

expression of number x by alternating first Ostrogradsky series, i.e.,

x =
1

q1(x)
− 1

q1(x)q2(x)
+ . . . +

(−1)n−1

q1(x)q2(x) . . . qn(x)
+ . . . ,

g1(x) = q1(x), gn(x) = qn+1(x) − qn(x).

We study structural, differential, fractal properties of function F according to the

sequence (pn). “Most” of such functions are singular and nowhere monotonic, and sin-

gular non-monotonic functions form an essential class of them. We prove that function

is nowhere monotonic if the sequence (pn) does not have zeroes but has negative terms.
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Анотацiя. Об’єктом дослiдження даної роботи є нескiнченна система функцiо-

нальних рiвнянь, залежна вiд послiдовностi параметрiв (pn) такої, що |pn| < 1,
∞∑

n=1
pn = 1, розв’язком якої є неперервна функцiя, визначена в iррацiональнiй точцi

(0, 1) рiвнiстю

F (x) = F (Ō1(g1(x), g2(x), . . . , gn(x), . . .)) = βg1(x) +
∑

n≥2

(−1)n−1βgn(x)

n−1∏

i=1

pgi(x),

де β1 = 1, βn+1 = 1 −
n∑

i=1

pi > 0, а Ō1(g1(x), g2(x), . . . , gn(x), . . .) — це формальний

запис числа x знакозмiнним рядом Остроградського 1-го виду, тобто

x =
1

q1(x)
− 1

q1(x)q2(x)
+ . . . +

(−1)n−1

q1(x)q2(x) . . . qn(x)
+ . . . ,

g1(x) = q1(x), gn(x) = qn+1(x) − qn(x).

Вивчаються структурнi, диференцiальнi, фрактальнi властивостi функцiї F в за-

лежностi вiд послiдовностi (pn). «Бiльшiсть» таких функцiй є сингулярними та нiде

не монотонними, серед них iстотний клас утворюють сингулярнi немонотоннi фун-

кцiї. Доведено, що функцiя є нiде не монотонною, якщо послiдовнiсть (pn) не має

нулiв, але має вiд’ємнi члени.

Ключовi слова: ряд Остроградського 1-го виду, зображення дiйсного числа, не-

скiнченна система функцiональних рiвнянь, сингулярна функцiя, нiде не монотонна

функцiя, мiра Лебега, фрактальна розмiрнiсть Хаусдорфа–Безиковича

Introduction

One of the many models for the general axiomatic theory of real numbers is the repre-

sentation of real numbers by the first Ostrogradsky series [18, 8, 14, 16, 9, 22] (also known

as Pierce series [20, 21, 11, 12, 27]):

q0 +
1

q1
− 1

q1q2
+ . . .+

(−1)k−1

q1q2 . . . qk
+ . . . , (1)

where q0 ∈ Z, qk ∈ N and qk+1 > qk. Any irrational number from (0, 1] can be uniquely

represented in the form of series (1) with q0 = 0, and rational numbers have two such

representations, both of which are finite.

Expression (1) for a real number x ∈ (0, 1] can be represented in the following form:

x =
1

g1

− 1

g1(g1 + g2)
+ · · ·+ (−1)n−1

g1(g1 + g2) . . . (g1 + · · · + gn)
+ · · · (2)

≡ Ō1(g1, g2, . . . , gn, . . . ), (3)

where g1 = q1, gn = qn+1−qn. The expression (2) is said to be the Ō1-representation of the

number x and the number gn = gn(x) is said to be its nth Ō1-symbol. The advantage of the

expression (2) over (1) is that digits (Ō1-symbols) of the alphabet N in the representation

of a number are “peer” (unlike numbers of the sequence (qk) such that qk+1 > qk).
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The history of evolution of the theory for this representation and a brief review of

literature can be found in [11, 12, 9, 22].

This representation has the following features:

(1) As expansions of numbers to regular continued fractions it has an infinite alphabet

unlike the s-adic representation or the Q∗-representation [1, 14].

(2) The denominators in the series (1) are products of positive integers (i.e., a real

number is modeled by positive integers).

(3) Series (1) converges rapidly. This is important for approximation theory.

(4) The system has a zero redundancy: an irrational number has a unique represen-

tation, and a rational number has two representations, both are finite.

(5) Topological and geometric properties of this representation are analogous to prop-

erties of the representation of real numbers by the regular continued fractions

whereas its metric theory is essentially different [9].

(6) The metric theory of this representation has much in common with the metric

theory of the representation of real numbers by Engel series [17].

(7) The “geometry” of this representation is not “self-similar” in the classic sense, but

has some features of “topological and metric N -self-similarity” [14].

Diversity of systems of representations of real numbers is a powerful tool for the mod-

eling and study of objects of continuous mathematics with complicated local structure.

First of all, this paper is devoted to functions without monotonicity intervals (in partic-

ular, non-differentiable functions) and singular probability distribution functions.

In previous papers we studied the geometry of the Ō1-representation (geometric mean-

ing of Ō1-symbols, properties of cylindrical sets, metric relations) [9], topological, metric

and fractal properties of sets with conditions on digits [9, 2] as well as properties of the

random variable

ξ =
∞∑

k=1

(−1)k−1

η1(η1 + η2) . . . (η1 + η2 + · · ·+ ηk)
, (4)

where the Ō1-symbols ηk are independent random variables with distributions P{ηk =

i} = pik ≥ 0,
∑
i∈N

pik = 1, i ∈ N, k ∈ N [16, 2]. However, even for identically distributed ηk

(pik = pi for any k ∈ N) we did not obtain necessary and sufficient conditions for ξ to be of

Cantor type (i.e., with its spectrum continuum and having zero Lebesgue measure). In the

present paper we return to these problems and prove new results about metric properties

of sets of numbers such that their Ō1-representation uses only part of the alphabet. These

sets are the spectra for the random variables under consideration.

There are some common problems in the theory of functions with complicated local

structure (singular, nowhere monotonic, crinkly, non-differentiable), in particular, the
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problem of developing effective tools for their representation and methods for their study.

In this paper we use systems of functional equations. In general, this approach is not so

widely used in probability distributions theory.

First of all, we give an equivalent definition of the probability distribution function of

a random variable ξ in the form of a unique solution of an infinite system of functional

equations in the class of bounded functions defined on [0, 1].

We proved in previous papers [16] that the spectrum of ξ is the closure of the set

C ≡ C[Ō1, V ] =
{
x : x = Ō1(g1, g2, . . . , gn, . . .), P{ηk = gk} > 0, gk ∈ N

}
,

and the set C is of zero Lebesgue measure if the set V of “allowed” symbols does not

contain arbitrarily long sequences of sequential symbols. Now we prove that this condition

is not necessary. We give two families of Cantor type probability distributions without

this condition.

1. Main object: system of functional equations

Let (pi) be a sequence of real numbers with the following properties

(1)
∞∑
i=1

pi = 1,

(2) |pi| < 1 for all i ∈ N,

(3) βk+1 = 1 −
k∑
i=1

pi > 0 for all k ∈ N and β1 = 1.

We consider the system of functional equations




f(Ō1(i)) = βi, i ∈ N,

f(Ō1(i, g1, g2, . . . , gn)) = βi − pif(Ō1(g1, g2, . . . , gn)),

f(Ō1(i, g1, g2, . . . , gn, . . .)) = βi − pif(Ō1(g1, g2, . . . , gn, . . .)).

(5)

We are interesting in solutions of this system which are bounded functions f , defined on

(0, 1].

Note that the system (5) is well-defined, that is the value of the function f is the same

for different representations of any rational number x. In fact, for any m ∈ N,

f(Ō1(g1, g2, . . . , gm−1, gm, 1)) =

m−1∑

k=1

(−1)k−1βgk

k−1∏

i=1

pgi
+ (−1)m−1

m−1∏

i=1

pgi
f(Ō1(gm, 1)),

f(Ō1(g1, g2, . . . , gm−1, gm + 1))

=
m−1∑

k=1

(−1)k−1βgk

k−1∏

i=1

pgi
+ (−1)m−1

m−1∏

i=1

pgi
f(Ō1(gm + 1)),
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and

f(Ō1(gm, 1)) = βgm − pgmf(Ō1(1))

= βgm − pgmβ1 = βgm+1 = f(Ō1(gm + 1)).

2. Solution of the system and its form

1. If a function F is defined on (0, 1], is bounded and satisfies the system (5) then the

following expansion holds:

F (x) = βg1 +
∑

k≥2

(−1)k−1βgk

k−1∏

i=1

pgi
, (6)

where gk = gk(x) is the kth Ō1-symbol of x, and the sum over k contains infinitely many

terms if x is irrational and finitely many otherwise.

Proof. Using the method of mathematical induction, we obtain

F (x) = F (Ō1(g1, g2, . . . , gk, . . .)) =
m∑

k=1

(−1)k−1βgk

k−1∏

i=1

pgi

+ (−1)m
m∏

i=1

pgi
F (Ō1(gm+1, gm+2, . . . , gk, . . .)). (7)

Since |pi| < 1 and therefore

∣∣∣
m∏

i=1

pgi

∣∣∣ ≤ (max
i∈N

{|pi|})m → 0 (m→ ∞),

and F is a bounded function, the remainder term in the expression (7) tends to 0 as

m→ ∞. Hence, equality (6) holds for irrational x.

We obtain a finite expression (6) for any rational number

x = Ō1(g1, g2, . . . , gm)

by iterating m− 1 times the second equation of (5). �

1. The system of functional equations (5) has a unique solution (6) in class of bounded

functions defined on (0, 1].

This corollary follows from facts that the Ō1-representation has a zero redundancy

and the right side of (6) gives the same results for different representations of a rational

number x.

For study properties of the function (6), let us recall some notions and metric relations

from the theory of Ō1-representation of numbers which we shall need henceforth.

Let c1, c2, . . . , cm be a fixed sequence of positive integers.
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1. The set Ō1
[c1c2...cm], which is the closure of the set of all numbers x ∈ (0, 1), whose

first m Ō1-symbols are equal to c1, c2, . . . , cm respectively, is said to be the cylindrical

set (cylinder) of rank m with the base c1c2 . . . cm, i.e.,

Ō1
[c1c2...cm] =

(
{x : x = Ō1(g1(x), . . . , gn(x), . . . ), gk(x) = ck, 1 ≤ k ≤ m}

)
.

It is not hard to prove that a cylindrical set Ō1
[c1c2...cm] is a closed interval whose length

is given by
∣∣Ō1

[c1c2...cm]

∣∣ =
1

σ1σ2 . . . σm(σm + 1)
, (8)

where σk =
k∑
i=1

ci.

1. We shall denote by Ō1
(c1c2...cm) the interior part of the set Ō1

[c1c2...cm], i.e., interval with

the same endpoints as cylinder Ō1
[c1c2...cm].

1 (important metric relations). For any positive integer s and m-tuple (c1, c2, . . . , cm) of

positive integers, the following equalities hold:
∣∣∣Ō1

[c1c2...cms]

∣∣∣
∣∣∣Ō1

[c1c2...cm]

∣∣∣
=

σm + 1

(σm + s)(σm + s+ 1)
, (9)

∣∣Ō1
[c1c2...cms1]

∣∣ =
1

σm + s

∣∣Ō1
[c1c2...cm(s+1)]

∣∣ , (10)

∣∣Ō1
[c1c2...cms]

∣∣ = 1

σm + s

∞∑

j=s+1

∣∣Ō1
[c1c2...cmj]

∣∣ . (11)

Proof. Equalities (9) and (10) follows immediately from (8). Equality (11) follows from (8)

and
∞∑

j=s+1

∣∣Ō1
[c1c2...cmj]

∣∣ =

∞∑

j=s+1

1

σ1σ2 . . . σm(σm + j)(σm + j + 1)

=
1

σ1σ2 . . . σm

∞∑

j=s+1

1

(σm + j)(σm + j + 1)

=
1

σ1σ2 . . . σm(σm + s+ 1)
. �

2. For any positive integer s and m-tuple (c1, c2, . . . , cm) of positive integers, the following

inequality holds: ∣∣∣Ō1
[c1c2...cms]

∣∣∣
∣∣∣Ō1

[c1c2...cm]

∣∣∣
≤ 1

2 · (2s− 1)
. (12)
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Moreover, for m ≥ s− 1:
∣∣∣Ō1

[c1c2...cms]

∣∣∣
∣∣∣Ō1

[c1c2...cm]

∣∣∣
≤ m+ 1

(m+ s)(m+ s+ 1)
. (13)

2. The function F is continuous on the interval (0, 1), and left-continuous in a point

x = 1.

Proof. For any x0 ∈ (0, 1] from (7) it follows that

F (x) − F (x0) = (−1)m
m∏

i=1

pgi

(
F (Ō1(gm+1(x), . . . , gk(x), . . .))

− F (Ō1(gm+1(x0), . . . , gk(x0), . . .))
)
,

where m is a positive integer such that gi(x) = gi(x0) for all i ≤ m and gm+1(x) 6=
gm+1(x0).

If x0 is an irrational number then x → x0 if and only if m→ ∞ and

|F (x) − F (x0)| ≤ C
∣∣∣
m∏

i=1

pgi

∣∣∣→ 0 (m→ ∞),

that is lim
x→x0

F (x) = F (x0). �

2. We can define the function F in the point x = 0 due to continuity: F (0) = 0, and

obtain that F is defined and continuous on [0, 1].

3. The infinite system of functional equations

f(Ō1(i, g1, g2, . . . , gn, . . .)) = βi − pif(Ō1(g1, g2, . . . , gn, . . .)), (14)

i ∈ N, in the class of continuous functions on [0, 1] has a unique solution, namely the

function (6).

3. Conditions for monotonicity and nowhere monotonicity of the

function F

Let us define the change µF ([a, b]) in function F on a closed interval [a, b] by the equality

µF ([a, b]) := F (b) − F (a).

3. The change in the function F on a cylinder Ō1
[c1...cm] is given by

µF (Ō1
[c1...cm]) =

m∏

i=1

pci.
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Proof. If m is odd number then

µF (Ō1
[c1c2...cm]) = F (Ō1(c1, c2, . . . , cm) − F (Ō1(c1, c2, . . . , cm + 1))

=

(
F

(
1

cm

)
− F

(
1

cm + 1

))m−1∏

i=1

pci =
m∏

i=1

pci.

If m is even number then

µF (Ō1
[c1c2...cm]) = F (Ō1(c1, c2, . . . , cm + 1) − F (Ō1(c1, c2, . . . , cm))

=

(
F

(
1

cm + 1

)
− F

(
1

cm

))m−1∏

i=1

pci =

m∏

i=1

pci. �

3. Let (c1, . . . , cm) be a given sequence of positive integers. If there exists pck = 0 with

k ≤ m, then

µF (Ō1
[c1...cm]) = 0.

2. If pk 6= 0 for any k ∈ N and there exist numbers pk and pj in the sequence (pn)

such that pkpj < 0, then the function F does not have any arbitrary small monotonicity

interval.

Proof. Suppose that conditions of the theorem are fulfilled and let (a, b) be a monotonicity

interval for the function F . Then there exists a cylinder Ō1
[c1c2...cm] such that Ō1

[c1c2...cm] ⊂
(a, b).

Since pk 6= 0 for all k ∈ N, using Lemma 3

µF (Ō1
[c1c2...cm]) =

m∏

i=1

pci 6= 0

and

µF (Ō1
[c1c2...cmk]) · µF (Ō1

[c1c2...cmj]) < 0,

that is the change in the function F is positive on one of the intervals Ō1
(c1c2...cmk)

,

Ō1
(c1c2...cmj)

, and the change in the function F is negative on the other interval. This

contradicts the monotonicity of the function F on the interval Ō1
(c1c2...cm) and proves the

theorem. �

4. The function F is constant on the cylinder Ō1
[c1...cm] if and only if there exists pck = 0

with k ≤ m.

4. If pk ≥ 0 for any k ∈ N then the function F is a monotonic non-decreasing function

on the closed interval [0, 1], moreover

F (0) = lim
x→0+

F (x) = 0, F (1) = 1.
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Proof. Consider two irrational numbers x1, x2 ∈ [0, 1] such that x1 < x2. Then gi(x1) =

gi(x2) for all i ≤ m and gm+1(x1) < gm+1(x2) for some m. We suppose here that m is an

odd integer, in the case of an even m the proof is analogous.

For odd m from (7) it follows that

F (x1) − F (x2) = −
m∏

i=1

pgi

(
F (Ō1(gm+1(x), . . . , gk(x), . . .))

− F (Ō1(gm+1(x0), . . . , gk(x0), . . .))
)
≤ 0.

Moreover,

F (0) = lim
x→0+

F (x) = lim
x→0+

F

(
1

n + 1

)
= lim

n→∞
βn+1 = 0,

F (1) = F

(
1

1

)
= β1 = 1,

and the lemma is proved. �

5. If pk ≥ 0 for any k ∈ N then the function F is a continuous probability distribution

function on [0, 1].

4. Differential properties of the function F

3. If the function (6) has a derivative in an irrational point

x0 = Ō1(g1, g2, . . . , gn, . . .),

then

F ′(x0) = lim
m→∞

(σm + 1)

m∏

i=1

σi
∣∣pgi(x)

∣∣ ,

where σi = g1(x)+g2(x)+ . . .+ gi(x). If x0 is a rational point, then F ′(x0) does not exist.

Proof. Indeed, if the derivative exists in an irrational point x0, then it is equal to

F ′(x0) = lim
x′n<x0<x′′n
x′′n−x′n→0

F (x′′n) − F (x′n)

x′′n − x′n
,

where x′n and x′′n may be endpoints of cylinder containing point x0. Then using expressions

for length of cylinder and change in function we have

F ′(x0) = lim
m→∞

∣∣∣∣
m∏
i=1

pgi(x0)

∣∣∣∣
∣∣∣Ō1

[g1(x0)g2(x0)...gm(x0)]

∣∣∣
= lim

m→∞
(σm + 1)

m∏

i=1

σi
∣∣pgi(x0)

∣∣ . �
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4. If pk ≥ 0 for any k ∈ N then the function F can be interpreted as a singular probability

distribution function of the random variable ξ with independent identically distributed

Ō1-symbols ηk taking the values 1, 2, . . . , i, . . . with probabilities p1, p2, . . . , pi, . . .

respectively.

Proof. It is known [16], that the distribution function of the random variable ξ is defined

by the equality

Fξ(x) = β1(x) +
∑

k≥2

(−1)k−1βk(x)

k−1∏

i=1

pgi(x)i, if 0 < x ≤ 1, (15)

where

βk(x) = 1 −
gk(x)−1∑

j=1

pjk

and gk(x) is the kth Ō1-symbol of number x. The series in (15) is infinite if x is irrational

and finite otherwise.

If pmk = pm for all k ∈ N then we obtain (6) from expression (15). �

5. Cantor singular functions

2. The spectrum Sζ of a probability distribution function Fζ of a random variable ζ is

the set of all point of increase of a function Fζ , i.e.,

Sζ ≡ SFζ
:= {x : Fζ(x+ ε) − Fζ(x− ε) > 0 ∀ ε > 0} =

= {x : P{ζ ∈ (x− ε, x+ ε)} > 0 ∀ ε > 0} .

If Sζ is a nowhere dense set of zero Lebesgue measure, then the continuous probability

distribution ζ (and its probability distribution function Fζ) is called singular probability

distribution (singular probability distribution function) of Cantor type. If the probability

distribution ζ is singularly continuous and Sζ is a nowhere dense set of positive Lebesgue

measure, then ζ (and the corresponding probability distribution function) is called sin-

gular probability distribution (singular probability distribution function) of quasi-Cantor

type [14, . 69].

5. If pk ≥ 0 for any k ∈ N, then the spectrum of the function F is the closure of the set

C =
{
x : pgk(x) > 0∀k ∈ N

}
= {x : gi(x) ∈ V = {i : pi 6= 0}} ≡ C[Ō1, V ].

The topological properties of the Borel set C[Ō1, V ] are well known [9]. An open

problem is to find the Lebesgue measure of this set when V and V̄ = N \ V are infinite,

moreover V is a “thin enough”.
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If the set V determining the spectrum ξ contains a subset

V0 = {m+ 1, m+ 2, . . . , m+ k, . . .} ,

where m is any given positive integer, then ξ has a quasi-Cantor-type probability distri-

bution, since it is known that

λ(C[Ō1, V0]) >
1

(m+ 1)2
,

see [9].

6. The Lebesgue measure of the set C[Ō1, V ] is given by the formula

λ(C[Ō1, V ]) =

∞∏

k=0

(
1 − λ(F̄k+1)

λ(Fk)

)
, (16)

where Fk is a union of all cylinders of rank k such that their interior contains points

belonging to the set C[Ō1, V ], F0 = [0, 1],

F̄k+1 := Fk \ Fk+1.

Proof. It is easy to see that

λ(Fk) ≤ λ(C[Ō1, V ]) = lim
k→∞

λ(Fk).

Then

λ(C[Ō1, V ]) = lim
k→∞

(
λ(Fk+1)

λ(Fk)
· λ(Fk)

λ(Fk−1)
· · · · · λ(F1)

λ(F0)

)
=

=

∞∏

k=0

λ(Fk+1)

λ(Fk)
=

∞∏

k=0

λ(Fk) − λ(F̄k+1)

λ(Fk)
=

=

∞∏

k=0

(
1 − λ(F̄k+1)

λ(Fk)

)
. �

6. The Lebesgue measure of the set C[Ō1, V ] is equal to 0 if and only if
∞∑

k=1

λ(F̄k+1)

λ(Fk)
= ∞. (17)

This corollary follows from known fact about relation between convergence of infinite

products and series.

7. If there exists positive constant c such that for all k large enough,

λ(F̄k+1)

λ(Fk)
≥ c, (18)

then the Lebesgue measure of the set C[Ō1, V ] is equal to 0.
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7. Let V̄ = N \ V = {u1, u2, . . . , un, . . .}, un < un+1. If there exists a constant γ ∈ (0, 1)

such that for all positive integers σ > σ0 the following inequality holds:

ϕ(σ) ≡
∞∑

n=1

1

(σ + un)(σ + un + 1)
≥ γ

σ + u1
, (19)

then the set C[Ō1, V ] is of zero Lebesgue measure.

Proof. Let us show that there exists a positive constant c such that the inequality (18)

holds if conditions of the lemma are fulfilled. To this end we consider a cylinder Ō1
[c1...ck] ⊂

Fk and set

F̄k+1 ∩ Ō1
[c1...ck] =

⋃

c1∈V
. . .

⋃

ck∈V

⋃

s∈V̄

Ō1
(c1...cks)

.

The Lebesgue measure of this set is equal to

λ(F̄k+1 ∩ Ō1
[c1...ck]) =

1

σ1σ2 . . . σk

∞∑

n=1

1

(σk + un)(σk + un + 1)

and for σk > σ0 we have

λ(F̄k+1 ∩ Ō1
[c1...ck])∣∣∣Ō1

[c1...cm]

∣∣∣
= (σk + 1)ϕ(σk) ≥ γ

σk + 1

σk + u1
≥ 2γ

1 + u1
.

Then
λ(F̄k+1)

λ(Fk)
≥ c, where c =

2γ

1 + u1

.

Hence, according to corollary 7, λ(C[Ō1, V ] = 0. So, the lemma is proved. �

4. For example, condition (19) is fulfilled when the elements of the set V form an arith-

metical progression with difference d ≥ 2 (see [9]).

5. If the set

V̄ = N \ V =
{
b11, b

1
2, b

2
2, b

1
3, b

2
3, b

3
3, . . . , b

1
n, b

2
n, . . . , b

n
n, . . .

}

has the properties

(1) bi+1
n − bin = 1,

(2) b1n+1 − bnn = n+ 1, n ∈ N,

then the set C[Ō1, V ] is of zero Lebesgue measure.
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Proof. For any fixed cylindrical set Ō1
[c1c2...ck] and corresponding σk we consider the sum

ϕ(σk) =
∑

c∈V̄

1

(σk + c)(σk + c+ 1)
=

∞∑

n=1

n∑

i=1

1

(σk + bin)(σk + bin + 1)

=
∞∑

n=1

(
1

σk + b1n
− 1

σk + bnn + 1

)
=

∞∑

n=1

bnn − b1n + 1

(σk + b1n)(σk + bnn + 1)

=
∞∑

n=1

n

(σk + b1n)(σk + bnn + 1)
≥

∞∑

n=1

n

(σk + b1n)(σk + b1n+1)

=

∞∑

n=1

n

2n

(
1

σk + b1n
− 1

σk + b1n+1

)
=

1

2(σk + b11)
.

Thus we have

ϕ(σk) ≥
1

2(σk + b11)
,

and the theorem follows from Lemma 7. �

6. If the set

V̄ = N \ V =
{
b11, b

2
1, . . . , b

22

1 , b
1
2, b

2
2, . . . , b

23

2 , . . . , b
1
n, b

2
n, . . . , b

2n+1

n , . . .
}

has the properties

(1) bi+1
n − bin = d,

(2) b1n+1 − b2
n+1

n = d+ 1, n ∈ N,

then the set C[Ō1, V ] is of zero Lebesgue measure.

Proof. For any fixed cylindrical set Ō1
[c1c2...ck] and corresponding σk we consider the sum

ϕ(σk) =
∑

c∈V̄

1

(σk + c)(σk + c+ 1)
=

∞∑

n=1

2n+1∑

i=1

1

(σk + bin)(σk + bin + 1)
.

We have the following estimate

ϕ(σk) ≥
∞∑

n=1

(2n+1−1∑

i=1

1

(σk + bin)(σk + bi+1
n )

− 1

(σk + b2n+1

n )(σk + b2n+1

n + d)

)

=
1

d

∞∑

n=1

(
1

σk + b1n
− 1

σk + b2n+1

n + d

)

=
1

d

∞∑

n=1

b2
n+1

n − b1n + d

(σk + b1n)(σk + b2n+1

n + d)
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=
1

d

∞∑

n=1

2n+1d

(σk + b1n)(σk + b2n+1

n + d)
≥ 1

d

∞∑

n=1

2n+1d

(σk + b1n)(σk + b1n+1)

=
1

d

∞∑

n=1

2n+1d

2n+1d+ 1

(
1

σk + b1n
− 1

σk + b1n+1

)

≥ 1

d

∞∑

n=1

2n+1d

2n+1d+ 2n+1d

(
1

σk + b1n
− 1

σk + b1n+1

)
=

1

2d(σk + b11)
.

Thus we have

ϕ(σk) ≥
1

2d(σk + b11)
,

and the theorem follows from Lemma 7. �

5. If the spectrum of the ξ is determined by a set V̄ which fulfills the conditions of

theorems 5 or 6, then the probability distribution ξ is a singular distribution of Cantor

type.

7. If sets V = {v : pv = 0} and V̄ ≡ N\V = {u : pu 6= 0} satisfy conditions of Theorems 5

or 6, then F is a singular function of Cantor type. Moreover, it is monotonic if pu > 0

for any u ∈ V̄ and non-monotonic if there exists pu < 0.

6. Fractal properties of the function F

For thinner analysis of essential sets for the function F we need notions of the fractal

analysis (the theory of the Hausdorff measures of fractional orders and the theory of the

metric Hausdorff–Besicovitch dimension [14, p. 53–56] or [4, p. 27–33]).

Let E be a bounded set from the space R
1. The number

d(E) = sup
x,y∈E

|x− y|

is called the diameter of E. Let Φ be a family of subsets of the space R1 such that for

any set E ⊂ R1 and for any ε > 0 there exists an at most countable ε-covering {Ej} of

the set E such that Ej ∈ Φ and d(Ej) ≤ ε.

For any bounded set E ⊂ R1, for any α > 0 and ε > 0 let

mα
ε (E,Φ) = inf

d(Ej)≤ε

{∑

j

dα(Ej)

}
,

where the infimum is taken over all at most countable ε-coverings {Ej} of the set E by

sets Ej ∈ Φ.

3. The non-negative number

Hα(E,Φ) = lim
ε→0

mα
ε (E,Φ) = sup

ε>0
mα
ε (E,Φ)
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is called the α-dimensional Hausdorff measure (or Hα-Hausdorff measure) of the set E

with respect to the family of coverings Φ.

8. The Hausdorff measure has the following properties:

(1) Hα
(⋃
i

Ei,Φ
)
≤∑

i

Hα(Ei,Φ);

(2) If α1 < α2 then Hα1(E,Φ) ≥ Hα2(E,Φ);

(3) If Hα1(E,Φ) = 0 then Hα2(E,Φ) = 0 for α1 < α2;

(4) If Hα2(E,Φ) = ∞ then Hα1(E,Φ) = ∞ for 0 < α1 < α2.

4. The non-negative number

α0(E,Φ) = sup{α : Hα(E,Φ) = +∞} = inf{α : Hα(E,Φ) = 0}

is called the Hausdorff–Besicovitch dimension of the set E with respect to the family of

coverings Φ.

Let us give some properties of the Hausdorff–Besicovitch dimension:

(1) α0(E,Φ) = 0 for any at most countable set E;

(2) α0(E1,Φ) ≤ α0(E2,Φ) if E1 ⊂ E2;

(3) α0(
⋃
n

En,Φ) = sup
n
α0(En,Φ);

(4) if E1 and E2 are affine equivalent (in particular, similar) sets then α0(E1,Φ) =

α0(E2,Φ).

Let Φ be a class of all intervals or closed intervals. Then the α-dimensional Hausdorff

measure and the Hausdorff–Besicovitch dimension of set E are denoted by Hα(E) and

α0(E) respectively.

9. If 1 < m is a fixed positive integer, V = {1, 2, . . . , m}, then the set C ≡ C[Ō1, V ] is

anomalously fractal, i.e.,

α0(C) = 0.

Proof. It is evident that the set C is a subset of the set

Fn =

m⋃

i1=1

. . .

m⋃

in=1

Ō1
[i1...in],

which is a union of mn cylinders of the rank n, and Ō1
[11...1︸︷︷︸

n

] is a longest cylinder, namely:

∣∣∣∣∣Ō
1
[11...1︸︷︷︸

n

]

∣∣∣∣∣ =
1

1 · 2 · 3 · . . . · n · (n+ 1)
=

1

(n+ 1)!
≡ εn.

Then

mα
εn

(C) ≤ mn

((n+ 1)!)α
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and

Hα(C) ≤ lim
n→∞

mn

((n+ 1)!)α
= lim

n→∞

n∏

i=1

m

(i+ 1)α
=

=

M∏

i=1

m

(i+ 1)α

∞∏

i=M+1

m

(i+ 1)α
.

Since for any m there exists M such that for all i > M inequality

m < (i+ 1)α

holds, the last infinite product is equal to 0 for any fixed m and α ∈ (0, 1]. So, Hα(C) = 0

for all α ∈ (0, 1] and hence α0(C) = 0. �

8. If 1 < m is a fixed positive integer, V = {1, 2, . . . , m} V0 ⊂ V , then the set C[Ō1, V0]

is anomalously fractal.

In general,

Hα(E,Φ1) 6= Hα(E,Φ2) as well as α0(E,Φ1) 6= α0(E,Φ2).

If Φ1 ⊂ Φ2 (i.e., any set from the family Φ1 belongs to the family Φ2) then it is evident

that

Hα(E,Φ1) ≥ Hα(E,Φ2) and α0(E,Φ1) ≥ α0(E,Φ2).

However, if Φ1 is the family of all subsets, Φ2 is the family of all open subsets and Φ3 is

a family of all closed subsets of R1 then

Hα(E,Φ1) = Hα(E,Φ2) = Hα(E,Φ3)

and

α0(E,Φ1) = α0(E,Φ2) = α0(E,Φ3)

for any set E ⊂ R1.

One of the traditional problems of the theory of the Hausdorff–Besicovitch dimension

is a question if class of sets Φ is enough for equality

α0(E,Φ) = α0(E).

One can prove that the set U of all cylindrical sets corresponding to Ō1-representation

is not enough, i.e., it is easy to construct set E such that α0(E,U) = α0(E).

Let W be a class of all connected sets such that they are unions of cylinders of the same

rank m+ 1 belonging to the same cylinder of the rank m. That is the class W consists of
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sets of the form:

(1) Ō1
[c1c2...cm], (2)

∞⋃

i=n

Ō1
[c1c2...cmi],

(3)

n⋃

i=1

Ō1
[c1c2...cmi], (4)

n⋃

i=k

Ō1
[c1c2...cmi]

for all positive integer k, m, n and sequences (c1, c2, . . . , cm) of positive integers.

It is clear that for n = 1 set (2) is a set (1), and for k = 1 set (4) is a set (3).

Let Wε be a class of sets belonging to W such that their lengths does not exceed ε.

10. For any interval u ⊂ (0, 1] there exists at most four sets belonging to W|u| and

covering u.

Proof. Let u = (a, b). The points a and b may belong

(1) to different cylindrical sets of rank 1,

(2) to the same cylinder of rank 1.

Consider case (1). Let a ∈ Ō1
[a1]

, b ∈ Ō1
[b1]

, c = sup Ō1
[a1], d = inf Ō1

[b1]
. Since a < b, we

have a1 > b1 and a < d < b.

Two cases are possible: a1 − b1 > 1 a1 − b1 = 1.

1.1. Let a1 − b1 > 1. Then (a, b) = (a, d] ∪ (d, b).

If a = inf Ō1
[a1], then [a, d] =

a1⋃
i=b1+1

Ō1
[i] ∈ Wd−a ⊂ Wb−a.

If a ∈ Ō1
(a1), then (a, d) is covered by two sets from Wd−a, namely:

Ō1
[a1] and

a1−1⋃

j=b1+1

Ō1
[j].

So, to cover [a, d] is enough two sets from Wd−a, hence, two sets from Wb−a.

Consider [d, b]. If b = sup Ō1
[b1]

, then [d, b] = Ō1
[b1]

∈ Wb−d ⊂ Wb−a.

If b ∈ Ō1
(b1), then we consider cylinders of rank 2 Ō1

[b1j]
belonging to Ō1

[b1]
.

If b = sup Ō1
[b1n], then [d, b] =

n⋃
j=1

Ō1
[b1j]

∈ Wb−d.

If b ∈ Ō1
(b1n), then [d, b] is covered by: a) two sets from Wb−a:

n−1⋃

j=1

Ō1
[b1j]

and Ō1
[b1n], if n > 1,

b) one set Ō1
[b11]

, if n = 1, since
∣∣∣Ō1

[b11]

∣∣∣ <
∣∣∣Ō1

[b1+1]

∣∣∣, Ō1
[b1+1] ⊂ [a, b].

Hence, it is enough two sets from Wb−a for covering [d, b] and at most four sets for

covering [a, b].

1.2. Let a1 − b1 = 1. Then c = d, a ∈ Ō1
(a1).
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Consider [a, d]. If a = inf Ō1
[a1k]

, then

[a, d] =

∞⋃

j=k

Ō1
[a1j]

∈ Wd−a ⊂ Wb−a.

If a ∈ Ō1
(a1k)

, then [a, d] is covered by two sets from Wb−a, namely:

Ō1
[a1k]

and
∞⋃

j=k+1

Ō1
[a1j]

,

since according to equality (11) we have
∣∣∣Ō1

[a1k]

∣∣∣ <
∞∑

j=k+1

∣∣∣Ō1
[a1j]

∣∣∣.

Hence, it is enough two sets from Wb−a for covering [a, d].

Now let us consider [d, b]. If b = sup Ō1
[b1n], then

[d, b] =

n⋃

j=1

Ō1
[b1j] ∈ Wb−d.

If b ∈ Ō1
(b1n) n > 1, then [d, b] is covered by two sets from Wb−a, namely:

n−1⋃

j=1

Ō1
[b1j]

and Ō1
[b1n],

since
∣∣∣Ō1

[b1n]

∣∣∣ <
∣∣∣Ō1

[b11]

∣∣∣, Ō1
[b11]

⊂ [d, b].

If b ∈ Ō1
(b11), then we consider cylinders Ō1

[b11j]
of rank 3 belonging to Ō1

[b11]
. In this

case [d, b] is covered by at most two sets from Wb−a, namely: a) one set:
∞⋃

j=s

Ō1
[b11j]

,

if b = sup Ō1
[b11s]

b) two sets

∞⋃

j=s+1

Ō1
[b11j] and Ō1

[b11s],

if b ∈ Ō1
(b11s), because the length of last set is less than the diameter of the first set. Hence,

it is enough two sets from Wb−a for covering [d, b] and four sets for covering of whole [a, b].

2. If a and b belong to the same cylinder of rank 1, then there exists cylinder Ō1
[c1c2...cm]

of some rank m containing numbers a and b, but there does not exist a cylinder of rank

m+ 1 containing these numbers.

If m is even, then to prove the lemma it is enough to repeat the procedure used in the

case 1 with the cylinder Ō1
[c1c2...cm] instead of [0, 1].

If m is odd number, one can proceed analogous. Here the numbers a and b, c and d are

interchanged. �
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8. The class of sets W is enough for the determination of the Hausdorff–Besicovitch

dimension of any Borel set E ⊂ [0, 1], i.e.,

α0(E,W) = α0(E). (20)

Proof. From lemma 10 it follows

mα
ε (E,W) ≤ 4mα

ε (E).

Indeed, for any closed interval u belonging to the covering E, there exists at most four

sets ω1, ω2, ω3, ω4 W such that

|ωi|α ≤ |u|α for any α ∈ (0, 1).

On the other hand,

mα
ε (E) ≤ mα

ε (E,W),

because in determination of mα
ε (E) the infimum is taken on wider class of coverings

containing also sets from W. Thus,

mα
ε (E) ≤ mα

ε (E,W) ≤ 4mα
ε (E)

for any ε > 0. Hence,

Hα(E) ≤ Hα(E,W) ≤ 4Hα(E),

i.e., Hα(E) and Hα(E,W) simultaneously over α take the values 0 and ∞. It means that

equality (20) holds. This proves the theorem. �

We mean fractal properties of function as:

(1) fine metric properties of essential for function sets related to the Hausdorff–

Besicovitch dimension (the spectrum of singular probability distribution function,

level sets of nowhere monotonic function et al.),

(2) fractal properties of graph of function as a set of space R2,

(3) transformation of dimension of sets if function is strictly monotonic.

7. Function F as transformation of [0, 1]

9. If pn > 0 for all n ∈ N then the function F is a transformation of [0, 1] (i.e., bijective

mapping of [0, 1] onto oneself ) such that for any sequence (pn) it does not preserve the

Hausdorff–Besicovitch dimension, i.e., there exists E ⊂ [0, 1] such that

α0(E) 6= α0(F (E)).
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Proof. Let us consider the set

C[Ō1, V ] =
{
x : x = Ō1(g1(x), . . . , gn(x), . . .),

gn(x) ∈ V = {m+ 1, m+ 2, . . .} ≡ N∞
m

}

where 1 < m is a fixed positive integer.

It is proved in [16] that the Lebesgue measure of the set C[Ō1, V ] is positive, hence

α0(C[Ō1, V ]) = 1.

On the other hand, the Hausdorff–Besicovitch dimension of the set F (E) is a solution

of the equation
∞∑

i=m+1

pxi = 1.

It is easy to see that this solution is less than 1. �
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trogradskĭı for the approximation of irrational numbers // Uspehi Matem. Nauk. 1951. Vol. 6, no.

5 (45). P. 33–42.

[19] Rogers C. A. Hausdorff measures. Cambridge Univ. Press, 1970.

[20] Salzer H. E. The approximation of numbers as sums of reciprocals // Amer. Math.

Monthly. 1947. Vol. 54, no. 3. P. 135–142.

[21] Salzer H. E. Further remarks on the approximation of numbers as sums of reciprocals // Amer.

Math. Monthly. 1948. Vol. 55, no. 6. P. 350–356.

[22] Albeverio S., Baranovskyi O., Pratsiovytyi M., Torbin G. The set of incomplete sums of the first

Ostrogradsky series and anomalously fractal probability distributions on it // Rev. Roumaine Math.

Pures Appl. 2009. Vol. 54, no. 2. P. 85–115.

[23] Shallit J. O. Some predictable Pierce expansions // Fibonacci Quart. 1984. Vol. 22, no. 4. P. 332–

335.

[24] Shallit J. O. Metric theory of Pierce expansions // Fibonacci Quart. 1986. Vol. 24, no. 1. P. 22–40.
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