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On one class of functions

related to Ostrogradsky series
and containing singular
and nowhere monotonic functions
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ABSTRACT. In the paper, we consider the infinite system of functional equations de-
o0
pending on sequence of parameters (p,) such that |p,| <1, > pn, = 1. The solution of

n=1
this system is the continuous function defined at irrational point of (0,1) by equality

n—1
F(x) = F(Ol(gl(x)ng(x)v ce ,gn(m), s )) = ﬁgl(ﬂﬂ) + Z(_l)nilﬁgn(ﬂﬂ) H Pgi(x)>
n>2 i=1
n —
where 81 = 1, Bpy1 = 1 — > p; > 0, and OY(g1(x), g2(x), ..., gn(x),...) is a formal
i=1
expression of number x by alternating first Ostrogradsky series, i.e.,
1 1 (—1)n-t
T = — +...+
@(r)  q(r)g() @1 (2)q2(x) - - gn(x)
91(z) = q1(2), gn(2) = gni1(z) — gu(2).
We study structural, differential, fractal properties of function F' according to the
sequence (pp,). “Most” of such functions are singular and nowhere monotonic, and sin-

+...,

gular non-monotonic functions form an essential class of them. We prove that function
is nowhere monotonic if the sequence (p,,) does not have zeroes but has negative terms.
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AHOTALIA. O6’ekTOM JOCTIIZKEHHST JAHOI pOOOTH € HeCKiHYeHHa cucreMa (QyHKIOo-
HAJIbHUX DPIBHsIHB, 3aJe€XKHA BiJl HOCJALZOBHOCTI mapaMerpis (p,) Takoi, mo |p,| < 1,

o0

> pn =1, po3B’A3KOM 5IKOI € HelepepsHa (DYHKIIisI, BU3HAUEHA B IpPAIOHAIBHIN TOUI
n=1

(0, 1) piBHicTIO

F(z) = F(0'(g1(2), g2(2), -, gn(2), - ) = By + D (=1)" Bty [ ] Poior,

n>2 =1

n _
Ae 61 = 17 ﬂnJrl =1- Z pi > 07 a Ol(gl(z)aQQ(z)a s 7gn(x)7 e ) —ne (bOpMaﬂbHHﬁ
i=1
3allC YUCa & 3HAKO3MIHHUM psiioM OcTporpajicbKoro 1-ro Buiy, To6To
1 1 (—1)nt
T = — +...+
@(r)  q(r)g(x) 01 (2)q2() - - g ()
91(z) = q1(2), gn(2) = gni1(z) — gu ().
Busuarorbcst crpyKTypHi, qudepeHiiaibhi, pakTaibhi BacTuBocTi GpyHKIET F B 3a-

+...,

JIEZKHOCTI Bijl HOCTHIOBHOCTI (py,). «Blibmmictby Takux GyHKIIH € CHHTYISIpHUME Ta Hife
HE MOHOTOHHUMU, CEPEeJl HIUX ICTOTHUN KJIAC YTBOPIOIOTH CUHTYJISIDHI HEMOHOTOHHI (yH-
kuii. Jloseneno, mo QyHKIlisg € Hijle He MOHOTOHHOIO, SIKIIO HOCJIIOBHICTD (pn,) HE Mae
HYJIIB, ajle Ma€ BiJ €MHI 4JIeHN.

Kurouosi cioBa: psiji Octporpajichbkoro 1-ro BULy, 300parKeHHs JIHCHOTO YHUC/Ia, He-
cKiHueHHa cucreMa QYHKIIOHAIPHAX PIBHIHD, CHHTY/ISPHA (DYHKITIS, Hijle He MOHOTOHHA

dyHkIis, mipa Jlebera, ¢ppakraabHa po3mipHicTs Xayciaopda—besukopuda

INTRODUCTION

One of the many models for the general axiomatic theory of real numbers is the repre-
sentation of real numbers by the first Ostrogradsky series [18, 8, 14, 16, 9, 22| (also known
as Pierce series [20, 21, 11, 12, 27]):

qo+l—i+...+ﬂ+..., (1)
a1 192 @192 - - - Gk
where qo € Z, qr, € N and ggy1 > qr. Any irrational number from (0, 1] can be uniquely
represented in the form of series (1) with ¢o = 0, and rational numbers have two such
representations, both of which are finite.

Expression (1) for a real number x € (0, 1] can be represented in the following form:

1 1 I n (_1)n71 N (2)
r=— - —+ ...
g1 9i1(91+92) gi(gr+g2) ... (g1 +-+9gn)
= 01(91’92,,,.,%,...), (3)

where g1 = q1, gn = ¢ni1—qn. The expression (2) is said to be the O'-representation of the
number x and the number g, = g,(z) is said to be its nth O'-symbol. The advantage of the
expression (2) over (1) is that digits (Ol-symbols) of the alphabet N in the representation

of a number are “peer” (unlike numbers of the sequence (gx) such that gxr1 > gx).
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The history of evolution of the theory for this representation and a brief review of
literature can be found in [11, 12, 9, 22].

This representation has the following features:

(1) As expansions of numbers to regular continued fractions it has an infinite alphabet
unlike the s-adic representation or the Q*-representation [1, 14].

(2) The denominators in the series (1) are products of positive integers (i.e., a real
number is modeled by positive integers).

(3) Series (1) converges rapidly. This is important for approximation theory.

(4) The system has a zero redundancy: an irrational number has a unique represen-
tation, and a rational number has two representations, both are finite.

(5) Topological and geometric properties of this representation are analogous to prop-
erties of the representation of real numbers by the regular continued fractions
whereas its metric theory is essentially different [9].

(6) The metric theory of this representation has much in common with the metric
theory of the representation of real numbers by Engel series [17].

(7) The “geometry” of this representation is not “self-similar” in the classic sense, but

has some features of “topological and metric N-self-similarity” [14].

Diversity of systems of representations of real numbers is a powerful tool for the mod-
eling and study of objects of continuous mathematics with complicated local structure.
First of all, this paper is devoted to functions without monotonicity intervals (in partic-
ular, non-differentiable functions) and singular probability distribution functions.

In previous papers we studied the geometry of the O'-representation (geometric mean-
ing of O'-symbols, properties of cylindrical sets, metric relations) [9], topological, metric
and fractal properties of sets with conditions on digits [9, 2] as well as properties of the

random variable

‘- Z Cy™ , (4)

T (m+m2) . (m+me+ -+ m)

where the O'-symbols 7, are 1ndependent random variables with distributions P{n, =
it =pi>0,> pa=1,1€N, ke NJ[16, 2|]. However, even for identically distributed 7y
(pir, = p; for algj k € N) we did not obtain necessary and sufficient conditions for £ to be of
Cantor type (i.e., with its spectrum continuum and having zero Lebesgue measure). In the
present paper we return to these problems and prove new results about metric properties
of sets of numbers such that their O'-representation uses only part of the alphabet. These
sets are the spectra for the random variables under consideration.

There are some common problems in the theory of functions with complicated local

structure (singular, nowhere monotonic, crinkly, non-differentiable), in particular, the
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problem of developing effective tools for their representation and methods for their study.
In this paper we use systems of functional equations. In general, this approach is not so
widely used in probability distributions theory.

First of all, we give an equivalent definition of the probability distribution function of
a random variable £ in the form of a unique solution of an infinite system of functional

equations in the class of bounded functions defined on [0, 1].

We proved in previous papers [16] that the spectrum of ¢ is the closure of the set
C =C[04 V] = {x:x:()l(gl,gg,...,gn,...), P{m. = gx} >0, g GN},

and the set C' is of zero Lebesgue measure if the set V' of “allowed” symbols does not
contain arbitrarily long sequences of sequential symbols. Now we prove that this condition

is not necessary. We give two families of Cantor type probability distributions without
this condition.

1. MAIN OBJECT: SYSTEM OF FUNCTIONAL EQUATIONS

Let (pl) be a sequence of real numbers with the following properties
(1) sz =1,
(2) \pz\ <1fora1126N
(3) ﬁkﬂ_1—Zpl>0forallkENand61:1.
We consider the Zs:ylstem of functional equations
f(O'(@) =B, P€N,
F(O (i, 91,92, -, 90)) = Bi = pif (O (91, 92, - -, gn)), (5)
F(O' (i, 01,92, Gns ) = Bi = 2if (0N (g1, 92, -, Gy )

We are interesting in solutions of this system which are bounded functions f, defined on
(0,1].
Note that the system (5) is well-defined, that is the value of the function f is the same

for different representations of any rational number x. In fact, for any m € N,

m—1 k—1
f((_)l(gla 92,3 9m—1,9Gm, 1)) = Z(_l)k_lﬁgk Hpg, m ! H pgl gm, ))7
k=1 i=1
f(ol(glag27 <5 9m—1,9m + 1))
m—1

k—1
= (1), Hpgi ) H Py f (O} (gm + 1)),
i=1

=
Il
—
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and

f(O'(gm: 1)) = By, — P, f(O(1))
= ﬁgm - pgmﬁl = ﬁgm-i-l = f(ol(gm + 1))

2. SOLUTION OF THE SYSTEM AND ITS FORM

1. If a function F is defined on (0,1], is bounded and satisfies the system (5) then the

following expansion holds:

F(a) = 0+ 35, [T oo )

k>2
where g = gi(z) is the kth O'-symbol of x, and the sum over k contains infinitely many

terms if x is irrational and finitely many otherwise.

Proof. Using the method of mathematical induction, we obtain

m

F(a) = FO (91,92 96 ) = 3 (-1 [T pa

k=

—_

() T 2o F (O Grnsss Gtz s g1 ). (T)

i=1

Since |p;| < 1 and therefore

’Hpgi
=1

and F' is a bounded function, the remainder term in the expression (7) tends to 0 as

< (max {[pi[})™ = 0 (m — o),

m — oo. Hence, equality (6) holds for irrational x.

We obtain a finite expression (6) for any rational number

T = Ol(glag27 s 7gm)
by iterating m — 1 times the second equation of (5). OJ

1. The system of functional equations (5) has a unique solution (6) in class of bounded
functions defined on (0, 1].

This corollary follows from facts that the O'-representation has a zero redundancy
and the right side of (6) gives the same results for different representations of a rational
number x.

For study properties of the function (6), let us recall some notions and metric relations
from the theory of O!-representation of numbers which we shall need henceforth.

Let ¢q, ¢o, ..., ¢, be a fixed sequence of positive integers.
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1. The set 0[11

Cc1C2...Cm

;» which is the closure of the set of all numbers z € (0,1), whose
first m O'-symbols are equal to ci, ¢a, ..., ¢, respectively, is said to be the cylindrical

set (cylinder) of rank m with the base cicy . . . cp, i.e.,
O[lclcg...cm} = ({ZL‘ T = Ol(gl(x)a S 7gn(x)7 s )791{(3:) = Ck, 1 S k S m}) .

It is not hard to prove that a cylindrical set (_)[16162.“%} is a closed interval whose length

is given by
1
}Oﬁclcz---cm” - (8)

0102 ... O (0 + 1)’

k
where o = ) ¢;.
i=1
1. We shall denote by (_)% ) the interior part of the set O
c1C2...Cm

the same endpoints as cylinder O} .
[cica...cm)

[16162 eml’ i.e., interval with
Cm

1 (important metric relations). For any positive integer s and m-tuple (¢1, ¢, ..., ) of

positive integers, the following equalities hold:

N1
’ [cica...cms]

om+1
’*1 ’ " (om+5)(om+s+1) )
[c1ca...0m]
_ 1 _
’O[lclcg...cmsl]} = O'm—|—8’ [16102...Cm(5+1)] ) (10)
_ 1 = -
}0[10102...07,13]} = m Z ’0[10102...0771]'” . (11)

Jj=s+1

Proof. Equalities (9) and (10) follows immediately from (8). Equality (11) follows from (8)
and

[e.9]

- 1
1 —
Z }0[01(;2...()1%].] o Z 0'10‘2...0'm(0-m+j)(0-m +]+ ].)

j=s+1 j=s+1

1 = 1
N 0109 ...0m, Z (Um+])(0m+.]+1)

[cica...om]

j=s+1
1
= ) OJ
0109 ... Om(Om + 5+ 1)
2. For any positive integer s and m-tuple (cy, Ca, . . ., cm) of positive integers, the following
inequality holds:
Al
‘ C1€2...Cm S 1
[crcz ] < . (12)
’ Al ’ 2-(2s—1)
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Moreover, form > s — 1:

m+1
’()1 ’ “(m+s)(m+s+1)

[c1ca...0m]

) [c1c2...cm ]

(13)

2. The function F is continuous on the interval (0,1), and left-continuous in a point

r=1.

Proof. For any zy € (0, 1] from (7) it follows that
F(z) — F(zo) = megz< F(OY(gmsr (@), - -, gu(®),...)

— F(0! (g1 (20), - gel0). - ).
where m is a positive integer such that g;(z) = g¢;(zo) for all i < m and gn1(z) #

gm+1(x0>‘
If xg is an irrational number then x — =z if and only if m — oo and

—0 (m— o0),

IF@) = Flao)] < C|[] pa

that is lim F'(z) = F(xo). O

T—T0

2. We can define the function F in the point x = 0 due to continuity: F(0) = 0, and

obtain that F is defined and continuous on [0, 1].

3. The infinite system of functional equations

f(Ol(iuql)gQ)'"’gTL?’”)) ﬁ’t Zf( (gla.QQa"')gna"'))) (14)
i € N, in the class of continuous functions on [0,1] has a unique solution, namely the

function (6).

3. CONDITIONS FOR, MONOTONICITY AND NOWHERE MONOTONICITY OF THE
FUNCTION F

Let us define the change 1 ([a, b]) in function F on a closed interval [a, b] by the equality
pr(la, b]) == F(b) — F(a).

3. The change in the function F' on a cylinder (_)1 s given by

ceiCm]

[cl cm H DPe; -
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Proof. If m is odd number then

uF((_)[lcmmcm]) = F(O'(c1, 0, ¢m) — F(O'er,ca, .oy + 1))
m—1 m
1 1
—(F(=)=-F . = .
( (Cm) (Cm+1) Zlez Epl
If m is even number then
uF((_)[lcmmcm]) = F(O'(cr,c0,. . em+ 1) — F(OY (et e2, ...y em))
= Cm + 1 Cm o pci - p pci.
3. Let (c1,...,¢m) be a given sequence of positive integers. If there exists p., = 0 with
k <m, then

/‘LF(O[lcl...cm}) =0.

2. If pr # 0 for any k € N and there exist numbers py and p; in the sequence (p,)
such that prp; < 0, then the function I does not have any arbitrary small monotonicity

interval.

Proof. Suppose that conditions of the theorem are fulfilled and let (a, b) be a monotonicity
interval for the function F. Then there exists a cylinder (_)[10102___%} such that (_)[10102___%} C
(a,b).

Since pi # 0 for all £ € N, using Lemma 3

MF(O[lclcg...cm}) = Hpcz # 0
=1

and

:U'F(O[lcwz...cmk]) : MF(O[lcwz...Cmﬂ) <0,

that is the change in the function F' is positive on one of the intervals O%C )
12...cmk)
Al

(c1c2...cmj)?

contradicts the monotonicity of the function F' on the interval (_)%CICQ

and the change in the function F' is negative on the other interval. This
em) and proves the

theorem. O

4. The function F' is constant on the cylinder (7)[101.__%] if and only if there exists p., =0
with k < m.

4. If pr > 0 for any k € N then the function F' is a monotonic non-decreasing function

on the closed interval [0, 1], moreover

F(0)= lim F(z) =0, F(1)=1.

z—0+4
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Proof. Consider two irrational numbers z1,xo € [0, 1] such that z; < x5. Then g;(z1) =
gi(z2) for all i < m and gpy1(1) < gme1(za) for some m. We suppose here that m is an
odd integer, in the case of an even m the proof is analogous.

For odd m from (7) it follows that

F(ay) = Flas) = =[] po (F(O (gia (@), gu(a)....)

~ F(O! (g1 (20), - gelo). - ) < 0.

Moreover,
. . 1 .
0= Jip P = i P () = i e =
1
r=r (M) =net
and the lemma is proved. 0

5. If pr. > 0 for any k € N then the function F' is a continuous probability distribution

function on [0, 1].
4. DIFFERENTIAL PROPERTIES OF THE FUNCTION F

3. If the function (6) has a derivative in an irrational point

Ty = 61(917927 <o Gny - ‘)7
then .
F'(zo) = lim (0, + 1) HUZ' ’pgi(x)} ,

m—o00 .
=1

where o; = g1(x) + g2(x) + . ..+ gi(x). If 2y is a rational point, then F'(xqy) does not exist.

Proof. Indeed, if the derivative exists in an irrational point xy, then it is equal to

F(ry) — Fa)

F'(zg) = lim —
xl, <zo<z) X, — T,
x—zh, —0

where 2/, and x!! may be endpoints of cylinder containing point zy. Then using expressions

for length of cylinder and change in function we have

L—Ilpgi(zo)

= lim (Um + 1) HO’Z- }pgi(ivo)} . [

m—o00 .
=1

F'(zg) = lim —

1
[91(z0)g2(%0)-.-gm (20)]




44 S. Albeverio, O. Baranovskyi, Yu.Kondratiev, M. Pratsiovytyi

4. If pr > 0 for any k € N then the function F' can be interpreted as a singular probability
distribution function of the random wvariable & with independent identically distributed
O'-symbols n;, taking the values 1, 2, ..., i, ... with probabilities pi, pa, ..., Pir - .-

respectively.

Proof. 1t is known [16], that the distribution function of the random variable ¢ is defined
by the equality

k—1
Fg(l‘) = ﬁl(x> + Z(_l)k_lﬁk(x> Hpgi(fl')i? if0<z < 17 (15)
k>2 i=1
where
gr(z)—1

Brlx) =1— > pi
=1

and gy (z) is the kth O'-symbol of number z. The series in (15) is infinite if x is irrational
and finite otherwise.

If Pk = pm for all k € N then we obtain (6) from expression (15). O

5. CANTOR SINGULAR FUNCTIONS

2. The spectrum S¢ of a probability distribution function F¢ of a random variable ¢ is

the set of all point of increase of a function F¢, i.e.,
Se=8p, ={x: F(v+e)—F(r—¢)>0Ve >0} =
={z:P{Ce(x—c,x+e)} >0Ve>0}.

If S¢ is a nowhere dense set of zero Lebesgue measure, then the continuous probability
distribution ¢ (and its probability distribution function F) is called singular probability
distribution (singular probability distribution function) of Cantor type. If the probability
distribution ¢ is singularly continuous and S; is a nowhere dense set of positive Lebesgue
measure, then ¢ (and the corresponding probability distribution function) is called sin-
gular probability distribution (singular probability distribution function) of quasi-Cantor
type [14, . 69].

5. If pr > 0 for any k € N, then the spectrum of the function F is the closure of the set
C={z:py@ >0k eN} ={z:g(z) eV ={i:p #0}} =C[O, V]

The topological properties of the Borel set C[O!, V] are well known [9]. An open
problem is to find the Lebesgue measure of this set when V and V = N\ V are infinite,

moreover V' is a “thin enough”.
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If the set V' determining the spectrum & contains a subset
Vo={m+1m+2,.... m+k, ..},

where m is any given positive integer, then £ has a quasi-Cantor-type probability distri-

bution, since it is known that
1

AC[OY, V) > m 1

see [9].

6. The Lebesque measure of the set C[OY, V] is given by the formula

AcioL v =] (1 - A;?;;”) , (16)

k=0

where Fy is a union of all cylinders of rank k such that their interior contains points
belonging to the set C[OY, V], Fy =[0,1],

Fis1:=Fj,\ Fipq.
Proof. Tt is easy to see that
A(F) < A(C[OY, V]) = lim A(Fy).

Then
~1 T )‘(FkJrl) )\(Fk> )\(Fl) =
AC[OL,V]) = ;35&( MNE) AFo) )\(Fo)) -
Fk»Jrl . = A(Fk) _ )\(FkJFl) —
H NF,) U A(FE) -
e A Frq1)
:H(l_ A(Fw)' -

k=0

6. The Lebesque measure of the set C[O', V] is equal to 0 if and only if

Z AF’““ = 0. (17)

This corollary follows from known fact about relation between convergence of infinite

products and series.

7. If there exists positive constant ¢ such that for all k large enough,

A(Fit1)
A(F)

then the Lebesgue measure of the set C[OY, V] is equal to 0.

> ¢, (18)
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7. Let V. =N\V = {u,us, ..., Un, ...}, Up < Uny1. If there exists a constant vy € (0,1)

such that for all positive integers o > oo the following inequality holds:

o)=Y : > (19)

= (ot up)(o+u,+1) T o +u’

then the set C[OY, V] is of zero Lebesque measure.

Proof. Let us show that there exists a positive constant ¢ such that the inequality (18)

holds if conditions of the lemma are fulfilled. To this end we consider a cylinder O} 1 C

[e1...ck
F}, and set
_ ~1 Al
FrnnOhy = U U U0k

ceV ck€V seV
The Lebesgue measure of this set is equal to

L . 1
M Fyq N O} =
( k41 [Cl---ck}) 0103 ...0% Z (Uk + un)(ak +Un + 1>

n=1
and for o, > oy we have

)\(Fk+1 ﬂ Ol })

[Cl---ck Jk‘ —'— 1 2")/
= 1 > > .
‘(_)[1 }‘ (o% + )‘P(Uk)—’}/ak_i_ul “ T4 u
Then ( _ )
A(Fry1 2y
>c¢, where c= :
AMFy) — I+
Hence, according to corollary 7, A(C[O!, V] = 0. So, the lemma is proved. O

4. For example, condition (19) is fulfilled when the elements of the set V' form an arith-
metical progression with difference d > 2 (see [9]).

5. If the set
V =N\V = {b],b3,03,b3,03,05,...,b,,0%,....00, ...}
has the properties
(1) b = b, = 1,
(2) by — b =n+1,neN,
then the set C[OY, V] is of zero Lebesque measure.
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Proof. For any fixed cylindrical set (31 and corresponding o we consider the sum

2...Cl)

(,O(Uk):z(ak+c)(o_k+c+1 ZZ o",€—|—bZ O'k—l—bz—f‘l)

ceV n=1 i=1

( 1 1 )_i by — by +1
o +bh o+t 1) (o) 4 bL)(og + b+ 1)

NIERANIER

n i n
(0k+b1)(0k+bn+1) 0k+bl)(0k+bn+1)

n—1 n=1
> n 1
:nZQ_(ak—l—b}L_Jk—i—an) ak+b
Thus we have
(a ) > #
ICA )
and the theorem follows from Lemma 7. O

6. If the set
V=N\V= {b},bi,...,bf,b;bg,...,bgg,...,b;,bi,...,bi"“,...}
has the properties
(1) b — b, = d,
(2) b~ =d+1,neN,

then the set C[OY, V] is of zero Lebesgue measure.

Proof. For any fixed cylindrical set O1 and corresponding o, we consider the sum

ClCQ Ck
oo 2ntl
@(Uk):§(0k+c)(gk—|—c+l 21121 (o) + b)( Uk—f-bz—f-l)

We have the following estimate

oo  2ntlg

1 1
> _
#la Z<; TR T e i E e T )

n=1

1 & 1 1
Ez(a,ﬁbl _ak+62"“+d)

_1§: B2 — b +d
d = (og + L) (ox + 02" +d)
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B 1 i 2n+1d 1 i 2n+1d
- d  (op +bL) (o + 02" 4+ d) — d £ (op + bL)(on + bliy)

1o 2 1 1
d4=2""d+1\op+b, op+byy,

. Z 27+ 1 1 1
T d =20l d 4 20 \ oy + b o by ) 2d(o +0])

Thus we have .

> -
olow) 2 2d(oy + b1)’
and the theorem follows from Lemma 7. OJ

5. If the spectrum of the & is determined by a set V which fulfills the conditions of

theorems 5 or 6, then the probability distribution & is a singular distribution of Cantor

type.

7. IfsetsV = {v:p, =0} andV = N\V = {u : p, # 0} satisfy conditions of Theorems 5
or 6, then F' is a singular function of Cantor type. Moreover, it is monotonic if p, > 0

for any v € V and non-monotonic if there exists p, < 0.

6. FRACTAL PROPERTIES OF THE FUNCTION F

For thinner analysis of essential sets for the function F' we need notions of the fractal
analysis (the theory of the Hausdorff measures of fractional orders and the theory of the
metric Hausdorff-Besicovitch dimension [14, p. 53-56] or [4, p. 27-33]).

Let E be a bounded set from the space R'. The number

d(E) = sup |z —y|
z,y€E
is called the diameter of E. Let ® be a family of subsets of the space R! such that for
any set F C R' and for any € > 0 there exists an at most countable e-covering {E;} of
the set E such that E; € ® and d(E;) < e.
For any bounded set E C R, for any o > 0 and € > 0 let

me(E, @) d(}jan{Zd }

where the infimum is taken over all at most countable e-coverings {E;} of the set E by
sets F; € ®.
3. The non-negative number

HYE,®) =limmZ(E, ®) =supml(E, D)

e—0 e>0
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is called the a-dimensional Hausdorff measure (or H®-Hausdorff measure) of the set F

with respect to the family of coverings ®.

8. The Hausdorff measure has the following properties:
(1) HQ(UEZ@) < S HO(E, @);
(2) If ay < ap then Ho‘l(E ®) > H*2(E,®);
(3) If H**(E,®) = 0 then H**(E,®) =0 for oy < aw;
(4) If H**(E,®) = oo then H*' (E,®) = oo for 0 < oy < .

4. The non-negative number
apg(E, @) = sup{a : H¥(E,®) = 400} = inf{a: H*(E,®) = 0}

is called the Hausdorff-Besicovitch dimension of the set E with respect to the family of

coverings .

Let us give some properties of the Hausdorff-Besicovitch dimension:

(1

) ap(E, ®) =0 for any at most countable set E;
(2) ap(Er, @) < ap(Es, @) if By C Eo;

(3) « (U E, ®) = sup apg(E,, P);

(4) if E1 and Fy are affine equivalent (in particular, similar) sets then ag(E7, ) =

ag(Es, D).

Let ® be a class of all intervals or closed intervals. Then the a-dimensional Hausdorft
measure and the Hausdorff-Besicovitch dimension of set E are denoted by H*(E) and
ap(E) respectively.

9. If 1 < m is a fized positive integer, V = {1,2,...,m}, then the set C = C[O', V] is
anomalously fractal, i.e.,

040(0) = 0.

Proof. Tt is evident that the set C' is a subset of the set
U U O[Zl dn])
11=1 in=1

which is a union of m™ cylinders of the rank n, and O[11 g s a longest cylinder, namely:
—

Then
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and
m"” “ m
HYO) < lim —— = 1i =
(@) = hm e nE&H (i +1)°
M m > m
i=1 (i +1) i=M+1 (i +1)

Since for any m there exists M such that for all ¢ > M inequality
m < (i+1)*

holds, the last infinite product is equal to 0 for any fixed m and « € (0, 1]. So, H*(C) =0
for all o € (0, 1] and hence ap(C) = 0. O

8. If 1 < m is a fized positive integer, V = {1,2,...,m} Vo CV, then the set C[O*, V)

s anomalously fractal.

In general,
HY(E,®y) # H*(E, ®3) as well as  ag(E, P1) # ap(E, 2).

If &; C P, (i.e., any set from the family ®; belongs to the family ®5) then it is evident
that

HY(E,®1) > HY(E,®3) and ao(E,P1) > ap(E, y).
However, if ®; is the family of all subsets, ®5 is the family of all open subsets and ®j3 is

a family of all closed subsets of R! then
HY(E, 1) = H*(E, ®2) = H*(E, 3)
and
ao(E,P1) = ap(E, Pe) = ap(E, P3)
for any set £ C R!.

One of the traditional problems of the theory of the Hausdorff-Besicovitch dimension

is a question if class of sets ® is enough for equality
a0 (E, ®) = ag(E).

One can prove that the set 4 of all cylindrical sets corresponding to O'-representation
is not enough, i.e., it is easy to construct set E such that ag(E, ) = ap(E).
Let 20 be a class of all connected sets such that they are unions of cylinders of the same

rank m + 1 belonging to the same cylinder of the rank m. That is the class 20 consists of
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sets of the form:

(1) O[clcg .Cm]? U Oclcg .cmi)’
n
U [cica...cmi]? U Oclcg Cm ]
for all positive integer k, m, n and sequences (¢, co, . . . ,cm) of positive integers.

It is clear that for n =1 set (2) is a set (1), and for k =1 set (4) is a set (3).
Let 2. be a class of sets belonging to 2 such that their lengths does not exceed e.

10. For any interval u C (0,1] there exists at most four sets belonging to 20}, and

COVETING U.

Proof. Let u = (a,b). The points a and b may belong

(1) to different cylindrical sets of rank 1,
(2) to the same cylinder of rank 1.
Consider case (1). Let a € O1 g beE O[b |, ¢ = sup O[a pd= 1nfO[b] Since a < b, we
have a; > b; and a < d < b.
Two cases are possible: a; — by > 1 a; — by = 1.

1.1. Let a; — by > 1. Then(ab) (a,d) U (d,b).

If a = inf Of, ), then [a,d] = U Ofy € Wi—o C Wy
i=b1+1

Ifae O(lal), then (a,d) is covered by two sets from 20,_,, namely:
a1—1
Oy and | Of
j=bi+1
So, to cover [a,d] is enough two sets from 20,_,, hence, two sets from 20;_,,.
Consider [d,b]. If b = sup O[lbﬂ, then [d,b] = O[lbl] € Wy_q C Wy,
Ifth e (_)%b , then we consider cylinders of rank 2 O[lbl P belonging to O[lbl].

If b = sup O1 , then [d,b] = U1 O[lblj] € Wy_q.

Ifbe O(b qy» then [d, b] is covered by: a) two sets from 20,

U [bl]] and O[lbln}, lfn > 1,

b) one set O[b i i n =1, since ‘O[b 1 ‘ < )O

[b 4y C [a,b].

Hence, it is enough two sets from 20,_, for covering [d,b] and at most four sets for
covering |[a, b].

1.2. Let ay — by =1. Thenc=d, a € O(lal)
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Consider [a,d]. If a = inf O[1a1 > then

d) = J Ol € Wao C Wy

If a € O(lal r)» then [a, d] is covered by two sets from 20j_,, namely:

A1
O[alk} and U O[alj
j=k+1
since according to equality (11) we have )(_)1a1 k]‘ < 3 )(_)
j=k+1
Hence, it is enough two sets from 20,_, for covering |a, d

Now let us consider [d, b]. If b = sup O[b ) then

1
[a15]
].

U O[blj] € W g-

Ifoe O%bm) n > 1, then [d, b] is covered by two sets from 20;,_,, namely:

since ’O[b . ’Olb i|» Oy C [d, 0]

If b € O} (b11) , then we consider cylinders O[b 1] of rank 3 belonging to O[b - In this

case [d, b] is Covered by at most two sets from 20, _,, namely: a) one set:

U [b115]

if b= sup O,y b) two sets

U ()[lbllj] and O[lbllsl’

j=s+1

ifb e (_)%blls), because the length of last set is less than the diameter of the first set. Hence,
it is enough two sets from 20,_, for covering [d, b] and four sets for covering of whole [a, b].

2. If a and b belong to the same cylinder of rank 1, then there exists cylinder (7)[16102“_%]
of some rank m containing numbers a and b, but there does not exist a cylinder of rank
m + 1 containing these numbers.

If m is even, then to prove the lemma it is enough to repeat the procedure used in the
case 1 with the cylinder O lcres. .o 1DStead of [0, 1].

If m is odd number, one can proceed analogous. Here the numbers a and b, ¢ and d are

interchanged. O
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8. The class of sets 2 is enough for the determination of the Hausdorff-Besicovitch
dimension of any Borel set E C [0,1], i.e.,

ao(E, ) = ao(E). (20)
Proof. From lemma 10 it follows
mZ(E,200) < 4m2(E).
Indeed, for any closed interval u belonging to the covering F, there exists at most four
sets wy, wo, ws, wy W such that
lw;]* < |[u|*  for any a € (0,1).
On the other hand,
mg(E) < mZ(E,20),

because in determination of m&(E) the infimum is taken on wider class of coverings

containing also sets from 20. Thus,
mZ(E) <mg(E, ) < 4mZ(E)
for any € > 0. Hence,
HY(B) < HO (B, 20) < AH*(),
i.e., H*(F) and H*(FE,20) simultaneously over « take the values 0 and co. It means that
equality (20) holds. This proves the theorem. O

We mean fractal properties of function as:

(1) fine metric properties of essential for function sets related to the Hausdorff—
Besicovitch dimension (the spectrum of singular probability distribution function,
level sets of nowhere monotonic function et al.),

(2) fractal properties of graph of function as a set of space R?

(3) transformation of dimension of sets if function is strictly monotonic.

7. FUNCTION F' AS TRANSFORMATION OF [0, 1]

9. If p, > 0 for alln € N then the function F is a transformation of [0,1] (i.e., bijective
mapping of [0,1] onto oneself) such that for any sequence (p,) it does not preserve the

Hausdor{f-Besicovitch dimension, i.e., there exists E C [0, 1] such that

ao(E) # ao(F(E)).
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Proof. Let us consider the set

ClONV]i={z:2=0%gq(x),....g.(2),...),

gu(x) eV ={m+1,m+2,..} =Ny}

where 1 < m is a fixed positive integer.

It is proved in [16] that the Lebesgue measure of the set O[O, V] is positive, hence

ao(C[O4, V]) = 1.

On the other hand, the Hausdorff-Besicovitch dimension of the set F'(E) is a solution

of the equation

> pi=1

i=m+1

It is easy to see that this solution is less than 1. 0
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