DSpace at library NPU Dragomanova » Науковий часопис Національного педагогічного університету імені М.П. Драгоманова » Серія 01: Фізико-математичні науки » Випуск 15 »

Please use this identifier to cite or link to this item: http://enpuir.npu.edu.ua/handle/123456789/10622
Title: Зображення дійсних чисел нескінченно малими знакододатними узагальненими послідовностями Фібоначчі
Authors: Карвацький, Д. М.
Keywords: узагальненi послiдовностi Фiбоначчi
система числення
розмiрнiсть Хаусдорфа-Безиковича
обобщенные последовательности Фибоначчи
система исчисления
размерность Хаусдорфа-Безиковича
Fibonacci generalized sequence
numerical system
Hausdorff-Bezicovich dimension
Issue Date: 2013
Publisher: Вид-во НПУ ім. М. П. Драгоманова
Citation: Карвацький, Д. М. Зображення дійсних чисел нескінченно малими знакододатними узагальненими послідовностями Фібоначчі / Д. М. Карвацький // Науковий часопис Національного педагогічного університету iменi М. П. Драгоманова. Серiя 1 : Фiзико-математичнi науки : зб. наук. праць. – Київ : Вид-во НПУ iменi М. П. Драгоманова, 2013. – Вип. 15. – C. 56-73.
Abstract: У статтi вивчається двосимвольна система зображення дiйсних чисел, в основi якої лежить нескiнченно мала знакододатна узагальнена послiдовностi Фiбоначчi, а саме, послiдовностi дiйсних чисел (un), члени якої володiють наступноювластивiстю: un+2 = pun+1 + sun, n ∈ N, де u1, u2, p, s - фiксованi додатнi дiйснi числа. Дослiджувана система числення є надлишковою, оскiльки довiльне дiйсне число з деякого вiдрiзка може бути зображеним нескiнченною кiлькiстю способiв. Вивчено властивостi цилiндрiв, що вiдповiдають даному зображенню, дослiджено специфiку їх перекриттiв.
В статье изучается двухсимвольная система изображения действительных чисел, в основе которой лежит бесконечно малая знакоположительная обобщенная последовательность Фибоначчи, а именно, последовательности действительных чисел (un), члены которой владеют следующими свойствами: un + 2 = pun + 1 + sun, n ∈ N, где u1, u2, p, s - фиксированные положительные действительны числа. Исследуемая система исчисления является избыточной, поскольку произвольное действительное число с некоторого отрезка может быть изображено бесконечным количеством способов. Изучены свойства цилиндров, соответствующие данному изображению, исследована специфика их перекрытий.
In this paper we study two-symbol representation of real number, which are based on infinity small positive Fibonacci generalized sequences, namely, the sequences of eal numbers (un), whose terms satisfying following condition: un+2 = pun+1 + sun, n ∈ N, where u1, u2, p, s — fixed positive real numbers. This numerical system is redundant, since every real number from studied segment can be represented by infinity ways. Investigated the properties of cylindrical sets, which correspond this representing, studied the specificity of their overlap.
URI: http://enpuir.npu.edu.ua/handle/123456789/10622
Appears in Collections:Випуск 15

Files in This Item:
File Description SizeFormat 
Karvatskyy.pdf271.46 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.