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AHoTALIIA. Habejeno kpurepiil CKIHYEHHOCTI J1JTsT IUKJIIYHOT CAMOIIO/IOHOT IPyIIU aBTO-
MOpdi3MiB peryssipHOro Kopenesoro jepesa. OOUNCIEHO YUCI0 CTaHIB TBIDHUX €JIeMeH-

TiB [JI EBHOTO KJIACY CKIHIYEHHUX CAMOIOMIOHUX IUKJIIHUAX TPYIL.

ABSTRACT. A criterion for a cyclic self-similar group of automorphisms of a regular
rooted tree to be finite is presented. It is calculated the number of states of generators

for some class of finite self-similar cyclic groups.

Introduction

One of the natural problems concerning a residually finite group is to establish whether
or not this group admits a faithful self-similar action on some regular rooted tree (e.g.
[1, 2]). Much more difficult task is to describe all possible faithful self-similar actions of
a given group.

We start to consider the last question for cyclic groups. The first result of the present
paper gives a criterion for a cyclic self-similar group of automorphisms of a regular rooted
tree to be finite (Theorem 1). After that we concentrate on case of finite cyclic self-similar
groups. We assume that its generator cyclically permutes vertices connected with the root
of the tree and estimates the number of its states. It is shown explicitly that this number

varies between 1 and d, where d denotes the number of vertices connected with the root
(Theorem 2).

1. Automorphism groups of rooted trees

Let d > 2 be a natural number. We consider a regular d-ary rooted tree T, and fix a
numeration of vertices, which start in the root. Then any automorphism g of the tree T,
can be uniquely expressed as:

9="(91,92,---,9a)T, (1)
where g1, g, ..., gq are some automorphisms of 7, and 7 is a permutation from the sym-

metric group S;. These automorphisms are called first level states of the automorphism
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g. The nth level states are first level states of (n — 1)th level states of the automorphism
g, n > 2. The automorphism g itself is the zero level state of g. Presentation (1) is called
the wreath recursion of g.

We can calculate the product of two automorphisms, which are presented as (1). Let

g, h € AutTy, g = (91,92, ---,9a)7™, h = (hy, ho, ..., hg)o. Than their product equals

g-h=1(91,92,...,9a)7 - (h1, ha, ..., hq)o = (g1hxq1), - - -, Gilhr(a)) 7O (2)

A subgroup G of the automorphisms group Ty is called self-similar if all states of
arbitrary automorphism g € G belong to G ([3, 4]). The notation (1) is useful to define
recurrently generators of finitely generated self-similar groups. Generators gy, ..., g, of

such a group satisfy the following wreath recursions:

g = (911, gi2, - -- ,gld)m,
ge = (921, g22, ... ,92d>7727

(3)
9dm = (gmh dm2, - - - 7gmd)7rm7

where 7; € S(X) and g;; are words in the alphabet {gi"",..., ¢!}, 1 <i<m,1<j <d.

2. Cyclic self-similar groups

We fix X = {1,2,...,d} and denote the symmetric group on X by Sy. All groups are

considered as subgroups of AutT.

Lemma 1. Any cyclic self-similar group G can be generated by an element g having

the following wreath recursion:
9=1(9",9",....9"), (4)
where aq,...,0q € Z, ™ € Sy.
PROOF. The only generator g of a cyclic self-similar group G have a form

9= (91,92, --,94)T,
where g; = hihy ... hy,, and by = g1, j € {1,...,m;}, m; € N, i € X. Let deg(h;) be the

degree of h;, i.e.:

—1, when h; = g7 !
deg(hy) =4~ "
1, when h; = g.
Then g; = g%, where oy; = i deg(h;) and it satisfies conditions of lemma. 0
j=1

Let an automorphism g € AutTy is defined by (4) and a self-similar group G is gener-
ated by g. For arbitrary ¢ € X we use the following notation:
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(1) O:(i) = {j € X|7"(i) = j,n € N} (the orbit of ¢ in ).
|0x (i)
(2) S(Z) = Zl ps—1(5)-
Proposition 1. Let the permutation m is presented as a product of independent cycles
T = mTy... 7. Let I(m;) be the length of cycle m;, where j = 1,... k. Then l(7;) =

|0, ()|, where i =1,...,d and m;(i) # i.

PROOF. Since m = 17y ... 7 is the product of independent cycles O(i) = O, (i) for
i=1,...,d and 7;(i) # 4. It means that 7,(i) =4, forall s =1,...,k, s # j. Then

Or, (i) = {m;(0), 72(), ...} = {1, m;(0), ... ™7 (@)}
Since 7} # 75 if r # s, where r,s € {1,...,I(m;) — 1} then |Og,(i)| = (7). It means that
|Ox(8)] = 1(m;). 0

Theorem 1. A self-similar cyclic group G generated by an element g of the form (4)
is finite if and only if S(i) is divisible by |Ox(3)| for alli € X. In this case |G| = n, where

n is the order of the permutation .

PROOF. Let S(i) be divisible by |O(i)| for alli € X.
The following equality is valid:

The order n of 7 is calculated as n = lem(|O5(1)|,...,|Ox(d)|), where the notation
lem(-,...,-) is used for the least common multiple. Since first level states of gl9=®l|;
will be multiplied by g® Proposition 1 implies that n is divisible by every |O, ()|, where
i1=1,...,d. Hence
gl = gor O = (gt
5(1) 5(d)
Then ¢g" = ((g”)m, ce (g”)m> = 1. Since the order of 7 is n the order of g is n
too.
Let there exists i = 1,...,d such that S(i) is not divisible by |O(7)].
In this case we need to prove that the order of ¢ is infinite. More precisely, we show that
g* # 1 for all k € N. Let k = n™q, where m € NU {0}, ¢ € N and ¢ is not divisible by n.
We prove the statement by induction on m.

Basis of induction: m = 0,k = n’q = q.
g"=g"=(g1,...,g%a)m? # 1, because of 77 # 1.

We suppose that: ¢g¥ = g""7 # 1.
Inductive step:
nm+1 n\n™
g =g = (g")" = (0 - gt a),
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where
qS(3) m+1
gk|z‘ = glo=I"

Let s be the maximum number such that ¢S(i)® is divisible by |O,(¢)|*. The number

satisfying this condition exists. In opposite case ¢ = 0 and further ¢ is divisible by n,

which contradicts with the initial condition. We have the following

k o a8 m+1 . o qS(iv)s5 Al 53 qS(i.)SS n_m
g ‘z = g 1o=@I ’Z == g 1ol ’Z =g [Ox (W[® [0 @] 7§ 1.
s+1 s
H k— on™tla £ q 0
ence g- =g # 1.

3. Finite cyclic self-similar groups

Let G be a cyclic self-similar group and ¢ its generator defined by (4). Consider the
case m = (1,2,...,d). Suppose that g satisfies conditions of Theorem 1, i.e. the group
G is a cyclic group of order g. In the following propositions we prove that varying the
initial definition of g one can achieve all possible numbers of states of g. The following

notations will be used:

(1) @ for the set of all states of g;
(2) Q; for sets of first level states of ¢°, i =0,...,d — 1.

Proposition 2. (1) If g = (g,...,9)7 then g has one state;
(2) If
g=1,...,1)m, or

-1

g=(g7",...,g )

then g has two states.

PROOF. It is directly verified that:

(1) @ ={g} and |Q| = L;
(2) if g=(1,...,1)w, then Q = {1, g} and |Q| = 2,
if g=(¢g7',...,g7 )7, then Q = {¢g*'} and |Q| = 2.

Proposition 3. Let k be a positive integer such that 1 < k < [%] If

g=("" g . g1, D
k—1 d—k

then g has 2k — 1 states.
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PROOF. Let M = {g~ %1 ... ¢g* '}. Direct calculations show that

g :<g7gik+17‘"79717]‘7"‘71797"'7g

Hence M C Q.
On the contrary, for any r, 0 < r < d:
= g ifr < kK,
g 1,if r > k.
Foralli =2 ... k:
. g ifk+1l—i<r<d+1—1i,
g|¢: _ .
g~ ", otherwise.
Foralli=k+1,...,d:
; {gk—f—i,ifd+1—i§r§k+d—z',
gl =

1, otherwise.

These presentations of automorphisms show that for all ¢ = 1,...,d and 0 < r < d,
g"|; € M. The last inclusion means that ¢ C M.
Hence Q@ = M and |Q| = 2k + 1. O

Proposition 4. Let k be a positive integer such that 2 < k < [%] If

g: <gik‘7g7'"7g7g27]‘7"'71)ﬂ-
— ——

k—2 d—k
then g has 2k states.

PROOF. Let M = {1,g,¢%2,..., %% 1.
Let 2<r<k-—2:

—k+r—1

—k+r—2)ﬂ_r7

g :(g 797.7‘"7gT7.gT+17""g27]‘7"'717g_k7"'7g
—_— — —— —

g

k—r—1 T d—k—r+1 r—1

gkil = (97279167 cee 7927 17 R 1agik> ce 7973)7"]6717
—— S ——— ——

k—1 d—2k+2 k—2
k k 2 -2\ _k
g :(1797---7ga17-"7179 yoes g )7?.
——
k—1 d—2k+1 k—1

Then Qg = {1} C M.

Qi ={1}u{g, ¢t U{g "} c M.

Q,={1yU{g? ..., Uu{g7k, ...,g7 "1} c M.

Qk—l - Qk - {]'} U {g27 ot 7gk} U {g_k7 tt 7g_2} C M‘
Therefore (), C M for all —k < r < —2 because of

Q-i ={97°g° € Qi}.
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Furthermore,
k -2
U QiU U Q=
=0 j=—Fk
Then @ = M and |Q| = 2k. O

Proposition 5. Assume that d is odd, i.e. d = 2d' + 1 for some d > 1. Let k be a
positive integer such that 2 < k < d'. If

g=1(1,...,1, gd/_k+2, g,...» 0, gd/_k”, L...,D)m
—— ——

d'—k+1 2k—3 &' —k+1
then g has 2k states.

PROOF. Let M = {1, g, g% *+2 g¥—kt3 gd+k=11
In this case Qo = {1}, Q1 = {1, g, g% *+?}.

It is directly verified that ¢'|, = ¢ forall i =d' — k+2,...,d + k — 2.
Hence M C Q.

We need to prove that Q C M. More precisely, we need to show that ¢"|, € M for all
g€ M and i = 1,...,d. Suppose that this statement does not hold. Then there exist
g" € M andi=1,...,dsuch that ¢"|, = ¢° ¢ M. Then r # 0 for Qy C M. Also r # 1
for Qy C M. Thend —k+2<r<d+k—-1 Asg°¢ Mthenl <s<d —k+2or
d+k—1<s<d Wehave

9°=9"l;=gl; 'glﬂ(i '9’7#(@') T g|wr—1(i)-

1) If g[; = 1 then gl ;) =1 or g g? k2,

) (1)
2) If g, = g then glﬂ(z g or gl = - R
)

3) If g|, = g¢ ~**2 then Ilpiy =L forall j =1,...,2d' =2k + 2 or g| ;,y = g, for all j =
1,...,2k—3.

We can apply these properties to g°. Let [ =d — k+ 2 then [ < r <[+ 2k — 3.
1) If g|, = 1 then we have the following cases:

1.1) s=04...40=0. In this case s = 0.

r

1.2) s=04... 40+l =1{. In this case s = [.
-1

13) s=0+...+0+H +14...+1,
—_——— w_/

r—r;—1

where 1 < r; <2k — 31nth1scasel—|—1<s<l+2k: 3.
14) s=0+4+... 40+l +1+...+1+1=0. In this case s = 0.
—_—— —_——

r—2k+1 2k—3
15)s=0+4+... 40+ +14+...+1++0+...+0=0,
— —— \—v—’

1 2k—3
where ri,ro > 1land ri +ro=7r—2k+ 1. In th1s case s=0.

2) If g|, = g then we have the following cases:
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21)s=1+...+ 1. Inthiscasel < s <2k —3.
—_——

r

22)s=1+4...+ 1+l Inthiscase 2l — 1 < s <[+ 2k — 3.
1

23)s=1+...+14+1+0+...+0. Same as 1.3).
24)s=14+...+1+l4+0+ ...+ 0+l =r. In this case s = r.
—_— —_———

r—21 20-2
25)s=1+...+1+l+0+... 40+ +14+...+1=r,
—_— ~—_—— —_—

71 20—2 T2
where r1,79 > 1 and r; + ro = r — 2[. In this case s = r.

3)If g|; = ¢' then we have the following cases:
31) s=1+0+...4+0. Same as 1.2).

32)s=1+0+4...4+ 0+l =2l =r. In this case s = r.
-2
20—

33) s=14+0+...+0+1+1+... +1. Same as 2.4).

34)s=1+14...4+ 1. Same as 2.2).
35)s=10l+1+...4 14+l =0. In this case s = 0.
—_———

2k—3
36)s=1l+1+4+...+1+1+0+...40. Same as 1.4).

In all cases g° € M. We have a contradiction, then ) C M. It means that ) = M
and |Q| = 2k. O

Proposition 6. An automorphism g has d states in each of the following cases:
(1) d=2d + 1 for some d > 1 and
9=01,9.¢%...,9" ")m;
(2) d=4d —2 for some d > 1 and

[-¥

d

9=1(9.9.9%9%..,9% 9

(3) d =4d for some d > 1 and
d_
9=01.9,9.99%...9>""
PROOF. In all cases we prove that the group G = (g) is finite and @) = G, where G is
the set of elements of G. The inclusion ) C G follows from the definition of self-similar
group. By Theorem 1 the group G is finite if and only if S(i) is divisible by |O(7)| for
alli=1,...,d. Since 7 has the only one orbit we need to prove that S(1) is divisible by

|Ox(1)|] = d. Consider each case separately.
(1) S(1) is divisible by d.
(d—1)-d d-2d+1-1)

S1)=0+1+2+...+d—-1= 5 = 5 =d-d.

Then G is finite.
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We have Q1 = {1,9,9%,...,9" '} =Gand Q; C Q. Then G C Q and G = Q.
(2) S(1) is divisible by d.
d d (d d+2
N=2-(1424+.. +=)==-|=+1])=d- ——=d-d.
sw=z- (1424 =5 (5+1) =a- T2 =

Then G is finite.
We have Q1 = {g,4?% ... ,g%}. Since g2 € Q; we consider Qy:

@ =9, g7 )
and Qy = {1,¢%,¢%,...,g%'}. Hence Q; U@, = G and Q; U@y C Q. Then

GCQand G=0Q.
(3) S(1) is divisible by d.

d d d_1).4d d ., £l+1
S(l):O+1+...+——1+1+2+...+—:(2 )2+2 (5 ):
2 / (. 2/ 2 2
o‘d,d e;gn
IR CERACRS) R R
2 4 '

Then G is finite.
We have Q1 = {1,9,4% ... ,g%}. Since ¢ € Q; we consider Qs:
%—i—l) 2

@ =199 ..,¢" g2 ")

and Q = {g,¢% ...,9°'}. Therefore Q; U@y = G and Q; U Qs C Q. Then
GCQand G=Q.
O

Now Propositions 2 — 6 imply the following assertion.

Theorem 2. Let GG be a finite self-similar cyclic group generated by an authomorphism
g of the form (4), where m = (1,...,d). There exists a set of values {1, s, ..., aq} such
that g has k states, where 1 < k < d.

4. Concluding remarks

It is natural to consider arbitrary permutation 7 of the vertices of the rooted tree and
automorphisms generating finite cyclic self-similar groups which extend 7. It is shown
that for m being a long cycle all possible numbers of states for such automorphisms can
be achieved. The question about possible numbers of states for automorphisms extending

other permutations remains open.
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