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Finite cyclic self-similar groups
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Taras Shevchenko National University of Kyiv

Анотацiя. Наведено критерiй скiнченностi для циклiчної самоподiбної групи авто-
морфiзмiв регулярного кореневого дерева. Обчислено число станiв твiрних елемен-
тiв для певного класу скiнченних самоподiбних циклiчних груп.

Abstract. A criterion for a cyclic self-similar group of automorphisms of a regular

rooted tree to be finite is presented. It is calculated the number of states of generators

for some class of finite self-similar cyclic groups.

Introduction

One of the natural problems concerning a residually finite group is to establish whether

or not this group admits a faithful self-similar action on some regular rooted tree (e.g.

[1, 2]). Much more difficult task is to describe all possible faithful self-similar actions of

a given group.

We start to consider the last question for cyclic groups. The first result of the present

paper gives a criterion for a cyclic self-similar group of automorphisms of a regular rooted

tree to be finite (Theorem 1). After that we concentrate on case of finite cyclic self-similar

groups. We assume that its generator cyclically permutes vertices connected with the root

of the tree and estimates the number of its states. It is shown explicitly that this number

varies between 1 and d, where d denotes the number of vertices connected with the root

(Theorem 2).

1. Automorphism groups of rooted trees

Let d ≥ 2 be a natural number. We consider a regular d-ary rooted tree Td and fix a

numeration of vertices, which start in the root. Then any automorphism g of the tree Td

can be uniquely expressed as:

g = (g1, g2, . . . , gd)π, (1)

where g1, g2, . . . , gd are some automorphisms of Td and π is a permutation from the sym-

metric group Sd. These automorphisms are called first level states of the automorphism
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g. The nth level states are first level states of (n− 1)th level states of the automorphism

g, n ≥ 2. The automorphism g itself is the zero level state of g. Presentation (1) is called

the wreath recursion of g.

We can calculate the product of two automorphisms, which are presented as (1). Let

g, h ∈ AutTd, g = (g1, g2, . . . , gd)π, h = (h1, h2, . . . , hd)σ. Than their product equals

g · h = (g1, g2, . . . , gd)π · (h1, h2, . . . , hd)σ = (g1hπ(1), . . . , gdhπ(d))πσ. (2)

A subgroup G of the automorphisms group Td is called self-similar if all states of

arbitrary automorphism g ∈ G belong to G ([3, 4]). The notation (1) is useful to define

recurrently generators of finitely generated self-similar groups. Generators g1, . . . , gm of

such a group satisfy the following wreath recursions:

g1 = (g11, g12, . . . , g1d)π1,

g2 = (g21, g22, . . . , g2d)π2,

. . .

gm = (gm1, gm2, . . . , gmd)πm,

(3)

where πi ∈ S(X) and gij are words in the alphabet {g±1
1 , . . . , g±1

m }, 1 ≤ i ≤ m, 1 ≤ j ≤ d.

2. Cyclic self-similar groups

We fix X = {1, 2, . . . , d} and denote the symmetric group on X by Sd. All groups are

considered as subgroups of AutTd.

Lemma 1. Any cyclic self-similar group G can be generated by an element g having

the following wreath recursion:

g = (gα1 , gα2 , . . . , gαd)π, (4)

where α1, . . . , αd ∈ Z, π ∈ Sd.

Proof. The only generator g of a cyclic self-similar group G have a form

g = (g1, g2, . . . , gd)π,

where gi = h1h2 . . . hmi and hj = g±1, j ∈ {1, . . . ,mi}, mi ∈ N, i ∈ X. Let deg(hj) be the

degree of hj, i.e.:

deg(hj) =

{
−1, when hj = g−1,

1, when hj = g.

Then gi = gαi , where αi =
mi∑
j=1

deg(hj) and it satisfies conditions of lemma. �

Let an automorphism g ∈ AutTd is defined by (4) and a self-similar group G is gener-

ated by g. For arbitrary i ∈ X we use the following notation:
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(1) Oπ(i) = {j ∈ X|πn(i) = j, n ∈ N} (the orbit of i in π).

(2) S(i) =
|Oπ(i)|∑
s=1

απs−1(i).

Proposition 1. Let the permutation π is presented as a product of independent cycles

π = π1π2 . . . πk. Let l(πj) be the length of cycle πj, where j = 1, . . . , k. Then l(πj) =

|Oπ(i)|, where i = 1, . . . , d and πj(i) 6= i.

Proof. Since π = π1π2 . . . πk is the product of independent cycles Oπ(i) = Oπj(i) for

i = 1, . . . , d and πj(i) 6= i. It means that πs(i) = i, for all s = 1, . . . , k, s 6= j. Then

Oπj(i) = {πj(i), π2
j (i), . . .} = {1, πj(i), . . . π

l(πj)−1
j (i)}.

Since πrj 6= πsj if r 6= s, where r, s ∈ {1, . . . , l(πj)− 1} then |Oπj(i)| = l(πj). It means that

|Oπ(i)| = l(πj). �

Theorem 1. A self-similar cyclic group G generated by an element g of the form ( 4)

is finite if and only if S(i) is divisible by |Oπ(i)| for all i ∈ X. In this case |G| = n, where

n is the order of the permutation π.

Proof. Let S(i) be divisible by |Oπ(i)| for all i ∈ X.

The following equality is valid:

g|Oπ(i)||i = gS(i).

The order n of π is calculated as n = lcm(|Oπ(1)|, . . . , |Oπ(d)|), where the notation

lcm(·, . . . , ·) is used for the least common multiple. Since first level states of g|Oπ(i)||i
will be multiplied by gαi Proposition 1 implies that n is divisible by every |Oπ(i)|, where

i = 1, . . . , d. Hence

gn|i = g
n

|Oπ(i)|S(i) = (gn)
S(i)
|Oπ(i)| .

Then gn =
(

(gn)
S(1)
|Oπ(1)| , . . . , (gn)

S(d)
|Oπ(d)|

)
= 1. Since the order of π is n the order of g is n

too.

Let there exists i = 1, . . . , d such that S(i) is not divisible by |Oπ(i)|.
In this case we need to prove that the order of g is infinite. More precisely, we show that

gk 6= 1 for all k ∈ N. Let k = nmq, where m ∈ N ∪ {0}, q ∈ N and q is not divisible by n.

We prove the statement by induction on m.

Basis of induction: m = 0, k = n0q = q.

gk = gq = (gq|1, . . . , gq|d)πq 6= 1, because of πq 6= 1.

We suppose that: gk = gn
mq 6= 1.

Inductive step:

gk = gn
m+1q = (gn)n

mq = (gk|1, . . . , gk|d),
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where

gk|i = g
qS(i)
|Oπ(i)|n

m+1

.

Let s be the maximum number such that qS(i)s is divisible by |Oπ(i)|s. The number

satisfying this condition exists. In opposite case q = 0 and further q is divisible by n,

which contradicts with the initial condition. We have the following

gk|i . . . i︸ ︷︷ ︸
s+1

= g
qS(i)
|Oπ(i)|n

m+1

|i . . . i︸ ︷︷ ︸
s

= . . . = g
qS(i)s

|Oπ(i)|s n
m+1

|i = gS(i)
qS(i)s

|Oπ(i)|s
n

|Oπ(i)|n
m

6= 1.

Hence gk = gn
m+1q 6= 1. �

3. Finite cyclic self-similar groups

Let G be a cyclic self-similar group and g its generator defined by (4). Consider the

case π = (1, 2, . . . , d). Suppose that g satisfies conditions of Theorem 1, i.e. the group

G is a cyclic group of order g. In the following propositions we prove that varying the

initial definition of g one can achieve all possible numbers of states of g. The following

notations will be used:

(1) Q for the set of all states of g;

(2) Qi for sets of first level states of gi, i = 0, . . . , d− 1.

Proposition 2. (1) If g = (g, . . . , g)π then g has one state;

(2) If

g = (1, . . . , 1)π, or

g = (g−1, . . . , g−1)π

then g has two states.

Proof. It is directly verified that:

(1) Q = {g} and |Q| = 1;

(2) if g = (1, . . . , 1)π, then Q = {1, g} and |Q| = 2,

if g = (g−1, . . . , g−1)π, then Q = {g±1} and |Q| = 2.

�

Proposition 3. Let k be a positive integer such that 1 ≤ k ≤
[
d+1

2

]
. If

g = (gk−1, g−1, . . . , g−1︸ ︷︷ ︸
k−1

, 1, . . . , 1︸ ︷︷ ︸
d−k

)π

then g has 2k − 1 states.
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Proof. Let M = {g−k+1, . . . , gk−1}. Direct calculations show that

gk−1 = (g, g−k+1, . . . , g−1, 1, . . . , 1, g, . . . , gk−1)πk−1.

Hence M ⊆ Q.

On the contrary, for any r, 0 < r < d:

gr|1 =

{
gk−r, if r < k,

1, if r ≥ k.

For all i = 2, . . . , k:

gr|i =

{
g−k−1+i, if k + 1− i < r < d+ 1− i,

g−r, otherwise.

For all i = k + 1, . . . , d:

gr|i =

{
gk−r−i, if d+ 1− i ≤ r ≤ k + d− i,

1, otherwise.

These presentations of automorphisms show that for all i = 1, . . . , d and 0 ≤ r < d,

gr|i ∈M . The last inclusion means that Q ⊆M .

Hence Q = M and |Q| = 2k + 1. �

Proposition 4. Let k be a positive integer such that 2 ≤ k ≤
[
d−1

2

]
. If

g = (g−k, g, . . . , g︸ ︷︷ ︸
k−2

, g2, 1, . . . , 1︸ ︷︷ ︸
d−k

)π

then g has 2k states.

Proof. Let M = {1, g, g±2, . . . , g±k, }.
Let 2 ≤ r ≤ k − 2:

gr = (g−k+r−1, gr, . . . , gr︸ ︷︷ ︸
k−r−1

, gr+1, . . . , g2︸ ︷︷ ︸
r

, 1, . . . , 1︸ ︷︷ ︸
d−k−r+1

, g−k, . . . , g−k+r−2︸ ︷︷ ︸
r−1

)πr,

gk−1 = (g−2, gk, . . . , g2︸ ︷︷ ︸
k−1

, 1, . . . , 1︸ ︷︷ ︸
d−2k+2

, g−k, . . . , g−3︸ ︷︷ ︸
k−2

)πk−1,

gk = (1, gk, . . . , g2︸ ︷︷ ︸
k−1

, 1, . . . , 1︸ ︷︷ ︸
d−2k+1

, g−k, . . . , g−2︸ ︷︷ ︸
k−1

)πk.

Then Q0 = {1} ⊂M.

Q1 = {1} ∪ {g, g2} ∪ {g−k} ⊂M.

Qr = {1} ∪ {g2, . . . , gr+1} ∪ {g−k, . . . , g−k+r−1} ⊂M.

Qk−1 = Qk = {1} ∪ {g2, . . . , gk} ∪ {g−k, . . . , g−2} ⊂M.

Therefore Qr ⊂M for all −k ≤ r ≤ −2 because of

Q−i = {g−s|gs ∈ Qi}.
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Furthermore,
k⋃
i=0

Qi ∪
−2⋃
j=−k

Qj = M.

Then Q = M and |Q| = 2k. �

Proposition 5. Assume that d is odd, i.e. d = 2d′ + 1 for some d′ ≥ 1. Let k be a

positive integer such that 2 ≤ k ≤ d′. If

g = (1, . . . , 1︸ ︷︷ ︸
d′−k+1

, gd
′−k+2, g, . . . , g︸ ︷︷ ︸

2k−3

, gd
′−k+2, 1, . . . , 1︸ ︷︷ ︸

d′−k+1

)π

then g has 2k states.

Proof. Let M = {1, g, gd′−k+2, gd
′−k+3, . . . , gd

′+k−1}.
In this case Q0 = {1}, Q1 = {1, g, gd′−k+2}.
It is directly verified that gi|2 = gi+1 for all i = d′ − k + 2, . . . , d′ + k − 2.

Hence M ⊆ Q.

We need to prove that Q ⊆M . More precisely, we need to show that gr|i ∈M for all

gr ∈ M and i = 1, . . . , d. Suppose that this statement does not hold. Then there exist

gr ∈ M and i = 1, . . . , d such that gr|i = gs /∈ M . Then r 6= 0 for Q0 ⊂ M . Also r 6= 1

for Q1 ⊂ M . Then d′ − k + 2 ≤ r ≤ d′ + k − 1. As gs /∈ M then 1 < s < d′ − k + 2 or

d′ + k − 1 < s < d. We have

gs = gr|i = g|i · g|π(i) · g|π2(i) · . . . · g|πr−1(i).

1) If g|i = 1 then g|π(i) = 1 or g|π(i) = gd
′−k+2.

2) If g|i = g then g|π(i) = g or g|π(i) = gd
′−k+2.

3) If g|i = gd
′−k+2 then g|πj(i) = 1, for all j = 1, . . . , 2d′ − 2k + 2 or g|πj(i) = g, for all j =

1, . . . , 2k − 3.

We can apply these properties to gs. Let l = d′ − k + 2 then l ≤ r ≤ l + 2k − 3.

1) If g|i = 1 then we have the following cases:

1.1) s = 0 + . . .+ 0︸ ︷︷ ︸
r

= 0. In this case s = 0.

1.2) s = 0 + . . .+ 0︸ ︷︷ ︸
r−1

+l = l. In this case s = l.

1.3) s = 0 + . . .+ 0︸ ︷︷ ︸
r−r1−1

+l + 1 + . . .+ 1︸ ︷︷ ︸
r1

,

where 1 ≤ r1 ≤ 2k − 3. In this case l + 1 ≤ s ≤ l + 2k − 3.

1.4) s = 0 + . . .+ 0︸ ︷︷ ︸
r−2k+1

+l + 1 + . . .+ 1︸ ︷︷ ︸
2k−3

+l = 0. In this case s = 0.

1.5) s = 0 + . . .+ 0︸ ︷︷ ︸
r1

+l + 1 + . . .+ 1︸ ︷︷ ︸
2k−3

+l + 0 + . . .+ 0︸ ︷︷ ︸
r2

= 0,

where r1, r2 ≥ 1 and r1 + r2 = r − 2k + 1. In this case s = 0.

2) If g|i = g then we have the following cases:
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2.1) s = 1 + . . .+ 1︸ ︷︷ ︸
r

. In this case l ≤ s ≤ 2k − 3.

2.2) s = 1 + . . .+ 1︸ ︷︷ ︸
r−1

+l. In this case 2l − 1 ≤ s ≤ l + 2k − 3.

2.3) s = 1 + . . .+ 1 + l + 0 + . . .+ 0. Same as 1.3).

2.4) s = 1 + . . .+ 1︸ ︷︷ ︸
r−2l

+l + 0 + . . .+ 0︸ ︷︷ ︸
2l−2

+l = r. In this case s = r.

2.5) s = 1 + . . .+ 1︸ ︷︷ ︸
r1

+l + 0 + . . .+ 0︸ ︷︷ ︸
2l−2

+l + 1 + . . .+ 1︸ ︷︷ ︸
r2

= r,

where r1, r2 ≥ 1 and r1 + r2 = r − 2l. In this case s = r.

3)If g|i = gl then we have the following cases:

3.1) s = l + 0 + . . .+ 0. Same as 1.2).

3.2) s = l + 0 + . . .+ 0︸ ︷︷ ︸
2l−2

+l = 2l = r. In this case s = r.

3.3) s = l + 0 + . . .+ 0 + l + 1 + . . .+ 1. Same as 2.4).

3.4) s = l + 1 + . . .+ 1. Same as 2.2).

3.5) s = l + 1 + . . .+ 1︸ ︷︷ ︸
2k−3

+l = 0. In this case s = 0.

3.6) s = l + 1 + . . .+ 1 + l + 0 + . . .+ 0. Same as 1.4).

In all cases gs ∈ M . We have a contradiction, then Q ⊆ M . It means that Q = M

and |Q| = 2k. �

Proposition 6. An automorphism g has d states in each of the following cases:

(1) d = 2d′ + 1 for some d′ ≥ 1 and

g = (1, g, g2, . . . , gd−1)π;

(2) d = 4d′ − 2 for some d′ ≥ 1 and

g = (g, g, g2, g2, . . . , g
d
2 , g

d
2 )π;

(3) d = 4d′ for some d′ ≥ 1 and

g = (1, g, g, g2, g2, . . . , g
d
2
−1, g

d
2
−1, g

d
2 )π.

Proof. In all cases we prove that the group G = 〈g〉 is finite and Q = G, where G is

the set of elements of G. The inclusion Q ⊆ G follows from the definition of self-similar

group. By Theorem 1 the group G is finite if and only if S(i) is divisible by |Oπ(i)| for

all i = 1, . . . , d. Since π has the only one orbit we need to prove that S(1) is divisible by

|Oπ(1)| = d. Consider each case separately.

(1) S(1) is divisible by d.

S(1) = 0 + 1 + 2 + . . .+ d− 1 =
(d− 1) · d

2
=
d · (2d′ + 1− 1)

2
= d · d′.

Then G is finite.
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We have Q1 = {1, g, g2, . . . , gd−1} = G and Q1 ⊆ Q. Then G ⊆ Q and G = Q.

(2) S(1) is divisible by d.

S(1) = 2 ·
(

1 + 2 + . . .+
d

2

)
=
d

2
·
(
d

2
+ 1

)
= d · d+ 2

4
= d · d′.

Then G is finite.

We have Q1 = {g, g2, . . . , g
d
2}. Since g2 ∈ Q1 we consider Q2:

g2 = (g2, g3, . . . , gd−1, 1)π2

and Q2 = {1, g2, g3, . . . , gd−1}. Hence Q1 ∪ Q2 = G and Q1 ∪ Q2 ⊆ Q. Then

G ⊆ Q and G = Q.

(3) S(1) is divisible by d.

S(1) = 0 + 1 + . . .+
d

2
− 1︸ ︷︷ ︸

odd

+ 1 + 2 + . . .+
d

2︸ ︷︷ ︸
even

=

(
d
2
− 1
)
· d

2

2
+

d
2
·
(
d
2

+ 1
)

2
=

=
d
2
·
(
(d

2
− 1) + (d

2
+ 1)

)
2

= d · d
4

= d · d′.

Then G is finite.

We have Q1 = {1, g, g2, . . . , g
d
2}. Since g2 ∈ Q1 we consider Q2:

g2 = (g, g2, . . . , gd−1, g
d
2

+1)π2

and Q2 = {g, g2, . . . , gd−1}. Therefore Q1 ∪ Q2 = G and Q1 ∪ Q2 ⊆ Q. Then

G ⊆ Q and G = Q.

�

Now Propositions 2 – 6 imply the following assertion.

Theorem 2. Let G be a finite self-similar cyclic group generated by an authomorphism

g of the form (4), where π = (1, . . . , d). There exists a set of values {α1, α2, . . . , αd} such

that g has k states, where 1 ≤ k ≤ d.

4. Concluding remarks

It is natural to consider arbitrary permutation π of the vertices of the rooted tree and

automorphisms generating finite cyclic self-similar groups which extend π. It is shown

that for π being a long cycle all possible numbers of states for such automorphisms can

be achieved. The question about possible numbers of states for automorphisms extending

other permutations remains open.
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[1] Bartholdi L., S̆uniḱ Z. Some solvable automaton groups // Topological and Asymptotic Aspects of

Group Theory. — 2006. — vol. 394. — P. 11–30.

[2] Savchuk D., Vorobets Y. Automata generating free products of groups of order 2 // Journal of Algebra.

— 2011. — Vol. 336, no. 1. — P. 53 – 66.

[3] Grigorchuk R. I., Nekrashevich V. V., Sushchanskii V. I. Automata, dynamical systems and groups

// Proceedings of the Steklov Institute of Mathematics. — 2000. — 231. — P. 128 – 203.

[4] Nekrashevych. V. Self-similar groups. volume 117 of Mathematical Surveys and Monographs. Amer.

Math. Soc., Providence, RI, 2005.


